DOI: 10.17586/1023-5086-2024-91-12-99-109
УДК: 544.032.65
Влияние оптической микрокавитации на процессы фрагментации и дефрагментации агломератов углеродных наночастиц при воздействии наносекундных лазерных импульсов
Полный текст на elibrary.ru
Публикация в Journal of Optical Technology
Шамова А.А., Шандыбина Г.Д., Поляков Д.С., Беликов А.В. Влияние оптической микрокавитации на процессы фрагментации и дефрагментации агломератов углеродных наночастиц при воздействии наносекундных лазерных импульсов // Оптический журнал. 2024. Т. 91. № 12. С. 99–109. http://doi.org/10.17586/1023-5086-2024-91-12-99-109
Shamova A.A., Shandybina G.D., Polyakov D.S., Belikov A.V. Influence of optical microcavitation on fragmentation and defragmentation processes of carbon nanoparticle agglomerates under the action of nanosecond laser pulses [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 12. P. 99–109. http://doi.org/10.17586/1023-5086-2024-91-12-99-109
Alexandra A. Shamova, Galina D. Shandybina, Dmitry S. Polyakov, and Andrey V. Belikov, "Influence of optical microcavitation on fragmentation and defragmentation processes of carbon nanoparticle agglomerates under the action of nanosecond laser pulses," Journal of Optical Technology. 91(12) , 836-841 (2024). https://doi.org/10.1364/JOT.91.000836
Предмет исследования. Нелинейный процесс трансформации агломератов наночастиц технического углерода в биологической жидкой среде под воздействием наносекундного лазерного излучения. Цель работы. Определение роли оптической микрокавитации в совокупности с накопительными эффектами в конкурентных процессах фрагментации и дефрагментации агломератов наночастиц технического углерода в жидкой среде при воздействии серии наносекундных лазерных импульсов ближнего инфракрасного диапазона. Метод. Оптическая микроскопия в сочетании с программной обработкой изображений фантомных образцов, облучённых в различных лазерных режимах. Основные результаты. Экспериментально установлен нелинейный вклад накопительного нагрева в структурные изменения агломератов наночастиц технического углерода. Обнаружена область параметров (количество лазерных импульсов, частота их следования), в которой осуществляется переход от процесса фрагментации к процессу дефрагментации. Предложены механизмы фрагментации и дефрагментации агломератов наночастиц технического углерода. Практическая значимость. Исследованные закономерности важны при оптимизации режимов лазерной обработки агломератов наночастиц технического углерода в жидких средах, в том числе и биологических.
технический углерод, наносекундный лазерный импульс, агломерат, фрагментация, дефрагментация, микропузырьки, суспензия, накопительный нагрев
Благодарность:Коды OCIS: 140.3390, 140.3615
Список источников:1. Høgsberg T., Loeschner K., Löf D., Serup J. Tattoo inks in general usage contain nanoparticles // Br. J. Dermatol. 2011. V. 165. № 6. P. 1210–1218. https://doi. org/10.1111/j.1365-2133.2011.10561.x
2. Hong S., Carlson J., Lee H., Weissleder R. Bioorthogonal radiopaque hydrogel for endoscopic delivery and universal tissue marking // Adv. Healthc. Mater. 2016. V. 5. № 4. Р. 421–426. https://doi.org/10.1002/adhm. 201500780
3. Li J., Deng X., Wang L., Liu J., Xu K. Clinical application of carbon nanoparticles in lymphatic mapping during colorectal cancer surgeries: A systematic review and meta-analysis // Dig. Liver. Dis. 2020. V. 52. № 12. P. 1445–1454. https://doi.org/10.1016/j.dld.2020. 08.020
4. Hasan M.R., Herz J., Hermann D.M., Doeppner T.R. Intravascular perfusion of carbon black ink allows reliable visualization of cerebral vessels // J. Vis. Exp. 2013. V. 71. P. e4374. https://doi.org/10.3791/4374
5. Sengupta A., Gray M.D., Kelly S.C., Holguin S.Y., Thadhani N.N., Prausnitz M.R. Energy transfer mechanisms during molecular delivery to cells by laser-activated carbon nanoparticles // Biophys. J. 2017. V. 112. № 6. P. 1258–1269. https://doi.org/10.1016/j.bpj.2017.02.007
6. Skandalakis G.P., Rivera D.R., Rizea C.D., Bouras A., Jesu Raj J.G., Bozec D., Hadjipanayis C.G. Hyperthermia treatment advances for brain tumors // Int. J. Hyperther. 2020. V. 37 № 2. P. 3–19. https://doi.org/10. 1080/02656736.2020.1772512.
7. IARC working group on the evaluation of carcinogenic risks to humans. IARC monographs on the evaluation of carcinogenic risks to humans: Carbon black, titanium dioxide and talc. Lyon: International Agency for Research on Cancer, 2010. 456 p.
8. Шубный А.Г., Жигарьков В.С., Юсупов В.И., Свиридов А.П. Лазерное обесцвечивание татуировок: новый подход // Квантовая электроника. 2021. Т. 51. №. 1. С. 8–16. https://doi.org/10.1070/QEL17484
Shubnyy A.G., Zhigarkov V.S., Yusupov V.I., Sviridov A.P. Laser bleaching of tattoos: a new approach // Quantum Elec. 2021. V. 51. №. 1. P. 8–16. https://doi. org/10.1070/QEL17484
9. Тучин В.В. Оптика биологических тканей. Методы рассеяния света в медицинской диагностике / Перевод с англ. Дербова В.Л. Под ред. Тучина В.В. / М.: Физматлит, 2012. 811 с.
Tuchin V.V. Tissue optics: Light scattering methods and instruments for medical diagnosis. Third ed. Bellingham: SPIE Press, 2015. 935 p.
10. Mansour K., Soileau M.J., Van Stryland E.W. Nonlinear optical properties of carbon-black suspensions (ink) // JOSA B. 1992. V. 9. № 7. P. 1100–1109. https:// doi.org/10.1364/JOSAB.9.001100
11. Chakravarty P. Photoacoustic drug delivery using carbon nanoparticles activated by femtosecond and nanosecond laser pulses // PhD (Chemical & Biomolecular Engineering) thesis. Atlanta: Georgia Institute of Technology, 2009. 155 p.
12. Mukherjee S., Mishra P.C., Chaudhuri P. Stability of heat transfer nanofluids – a review // ChemBioEng. Rev. 2018. V. 5. № 5. P. 312–333. https://doi.org/ 10.1002/cben.201800008
13. Ko B., Lu W., Sokolov A.V., Lee H.W.H., Scully M.O., Zhang Z. Multi-pulse laser-induced bubble formation and nanoparticle aggregation using MoS2 nanoparticles // Sci Rep 2020. V. 10. № 1. Р. 15753. https://doi.org/10.1038/s41598-020-72689-x
14. Электронный ресурс URL: https://www. worldfamoustattooink.com/pages/compliancecertificates (World Famous Tattoo Ink / Material safety data sheet: True black)
15. Duck F.A. Physical properties of tissues: a comprehensive reference book. London, San Diego, New York, Boston, Sydney, Tokyo, Toronto: Academic Press, 2013. 336 р.
16. International commission on illumination colorimetry. Recommendations on uniform color spaces, color-difference equations, psychometric color terms. Supplement № 2 to CIE publication № 15. Paris: Bureau central de la CIE, 1978. 21 р.
17. Sardana K., Ranjan R., Ghunawat S. Optimising laser tattoo removal // J. Cutan. Aesthet. Surg. 2015. V. 8.
№ 1. P. 16–24. https://doi.org/10.4103/0974-2077.155068
18. Shandybina G., Shamova A., Belikov A., Polyakov D. Analysis of gas bubble formation on light-absorbing microinclusion in liquid during laser irradiation: experimental and theoretical investigation // Opt. Eng. 2021. V. 60. № 1. P. 016103. https://doi.org/10.1117/1.OE.60.1.016103
19. Polyakov D., Shandybina G., Shamova A. Analytical 3D modeling of accumulative heating under multipulse laser irradiation of inorganic materials and biological tissues // Therm. Sci. Eng. Prog 2022. V. 31. P. 101284. https://doi.org/10.1016/j.tsep.2022.101284
20. Юсупов В.И. Образование сверхкритической воды под воздействием лазерного излучения // Сверхкритические флюиды: Теория и практика. 2019. Т. 14. № 1. С. 71–83. https://doi.org/10.1134/ S1990793119070297
Yusupov V.I. Formation of supercritical water under laser radiation // Russ. J. Phys. Chem. B. 2019. V. 13. P. 1245–1253. https://doi.org/10.1134/S1990793119070297
en