ITMO
en/ en

ISSN: 1023-5086

en/

ISSN: 1023-5086

Научно-технический

Оптический журнал

Полнотекстовый перевод журнала на английский язык издаётся Optica Publishing Group под названием “Journal of Optical Technology“

Подача статьи Подать статью
Больше информации Назад

DOI: 10.17586/1023-5086-2024-91-08-14-24

УДК: 621.383.51

Моделирование фотоэлектрических характеристик солнечных элементов на основе CsPbI3, CsPbBr3 и создание экспериментальных структур

Ссылка для цитирования:

Дегтерев А.Э., Тарасов А.С., Дегтерева М.М., Павлова М.Д., Хоршев Н.А., Михайлов И.И., Ламкин И.А., Тарасов С.А. Моделирование фотоэлектрических характеристик солнечных элементов на основе CsPbI3, CsPbBr3 и создание экспериментальных структур // Оптический журнал. 2024. Т. 91. № 8. С. 14–24. http://doi.org/10.17586/1023-5086-2024-91-08-14-24

 

Degterev A.E., Tarasov A.S., Degtereva M.M., Pavlova M.D., Khorshev N.A., Mikhailov I.I., Lamkin I.A., Tarasov S.A. Modeling of photoelectric characteristics of solar cells based on CsPbI3, CsPbBr3 and creation of experimental structures [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 8. P. 14–24. http://doi.org/10.17586/1023-5086-2024-91-08-14-24

Ссылка на англоязычную версию:
-
Аннотация:

Предмет исследования. Солнечные элементы на основе фоточувствительных неорганических перовскитов CsPbI3 и CsPbBr3. Целью данной работы является исследование перспектив создания высокоэффективных структур на основе неорганических перовскитов CsPbI3 и CsPbBr3 в качестве фоточувствительных слоёв в солнечных элементах, а также компьютерное моделирование солнечных элементов в программном пакете AFORS-HET. Метод. Теоретическое исследование проводилось в программе AFORS-HET с открытым исходным кодом, которая предназначена для одномерного моделирования солнечных элементов и других оптоэлектронных устройств. При создании структур применялось следующее оборудование: центрифуга EZ4 spin coater для нанесения тонких плёнок и фоторезиста, лабораторные магнитные мешалки с подогревом ULAB US-1500D, установка вакуумного термического осаждения. Основные результаты. Солнечные элементы на основе фоточувствительных неорганических перовскитов CsPbI3 и CsPbBr3 были смоделированы в программе AFORS-HET. Оценены основные параметры фотоэлектрических элементов: коэффициент заполнения, ток короткого замыкания, напряжение холостого хода и КПД. Проведён теоретический анализ факторов и дефектов перовскитных плёнок, влияющих на работоспособность солнечных элементов. По результатам моделирования изготовлены и охарактеризованы фоточувствительные структуры на основе перовскита CsPbI3. Практическая значимость. Исследуемые солнечные элементы на основе перовскитов CsPbI3 и CsPbBr3 могут применяться в качестве эффективных преобразователей солнечной энергии в электрическую.

Ключевые слова:

перовскит, фотоэлектрические структуры, солнечные элементы

Благодарность:

работа поддержана проектом № FSEE-2022-0016.

Коды OCIS: 350.6050; 040.5350; 310.6805

Список источников:

1. Плешанов И.М., Марасанов Д.В., Зеленков Л.Е., Белорус А.О. Технология создания композитов на основе полимеров и нанокристаллов перовскитов для применений в качестве преобразователей излучения датчика искры // Оптический журнал. 2023. Т. 90. № 8. С. 111–119. http://doi.org/10.17586/1023-5086-2023-90-08-111-119
2. Lee M.M., Teuscher J., Miyasaka T. et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites // Science. 2012. V. 338. № 6107. P. 643–647. https://doi.org/10.1126/science.1228604
3. Zhou Y., Wang F., Cao Y. et al. Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance // Advanced Energy Materials. 2017. V. 7. № 22. P. 1701048. https://doi.org/10.1002/aenm.201701048
4. Li H., Tong G., Chen T. et al. Interface engineering using a perovskite derivative phase for efficient and stable CsPbBr3 solar cells // Journal of Materials Chemistry A. 2018. V. 6. № 29. P. 14255–14261. https://doi.org/10.1039/C8TA03811B
5. Kim J.Y., Lee J.W., Jung H.S. et al. High-efficiency perovskite solar cells // Chemical reviews. 2020. V. 120. № 15. P. 7867–7918. https://doi.org/10.1021/acs.chemrev.0c00107
6. Fateev S.A., Stepanov N.M., Petrov A.A. et al. Successive Solution–Liquid–Vapor conversion of metallic lead films for highly efficient perovskite solar cells // Russian Journal of Inorganic Chemistry. 2022. V. 67. № 7. P. 992–996. https://doi.org/10.1134/
S0036023622070075
7. Min H., Lee D.Y., Kim J. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes // Nature. 2021. V. 598. № 7881. P. 444–450. https://doi.org/10.1038/s41586-021-03964-8
8. Liang Z., Zhang Y., Xu H. et al. Out-of-plane cations homogenise perovskite composition for solar cells // Nature. 2023. P. 1–3. https://doi.org/10.1038/s41586-023-06784-0
9. Juarez-Perez E.J., Ono L.K., Maeda M. et al. Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability // Journal of Materials Chemistry A. 2018. V. 6. № 20. P. 9604–9612. https://doi.org/10.1039/C8TA03501F
10. Fateev S.A., Khrustalev V.N., Simonova A.V. et al. Acetamidinium-Methylammonium-based layered hybrid halide perovskite [CH3C(NH2)2][CH3NH3]PbI4: Synthesis, structure, and optical properties // Russian Journal of Inorganic Chemistry. 2022. V. 67. № 7. P. 997–1003. https://doi.org/10.1134/ S0036023622070087
11. Wang D., Li W., Du Z. et al. Highly efficient CsPbBr3 planar perovskite solar cells via additive engineering with NH4SCN // ACS Applied materials & interfaces. 2020. V. 12. № 9. P. 10579–10587. https://doi.org/10.1021/acsami.9b23384
12. Zhu P., Chen C., Dai J. et al. Toward the commercialization of perovskite solar modules // Advanced Materials. 2024. P. 2307357. https://doi.org/10.1002/adma.202307357
13. Zhang L., Guo T., Liu B. et al. Intermediate-phasemodified crystallization for stable and efficient CsPbI3 perovskite solar cells // ACS Applied Materials & Interfaces. 2022. V. 14. № 17. P. 19614–19622. https://doi.org/10.1021/acsami.2c04308

14. Yoon S.M., Min H., Kim J.B. et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells // Joule. 2021. V. 5. № 1. P. 183–196. https://doi.org/10.1016/j.joule.2020.11.020
15. Shao J.Y., Li D., Shi J. et al. Recent progress in perovskite solar cells: material science // Science China Chemistry. 2023. V. 66. № 1. P. 10–64. https://doi.org/10.1007/s11426-022-1445-2
16. Mehrabian M., Afshar E.N. Improving the efficiency of solar cell based on CsSn0.5Ge0.5I3 perovskite by using ZnO nanorods. Повышение эффективности солнечных элементов на основе перовскита CsSn0,5Ge0,5I3 с помощью наностержней ZnO [на англ. яз.] // Оптический журнал. 2022. Т. 89. № 5. С. 78–91. https://doi.org/10.17586/1023-5086-2022-89-05-78-91
17. Son A.G., Krivogina E.V., Romanov N.V. et al. CsPbI3 perovskite nanoparticles: Room-temperature synthesis and optical study // Russian Journal of Inorganic Chemistry. 2019. V. 64. P. 1587–1591. https://doi.org/10.1134/S0036023619120180
18. Wang J., Che Y., Duan Y. et al. 21.15%-efficiency and stable γ-CsPbI3 perovskite solar cells enabled by an Acyloin Ligand // Advanced Materials. 2023. V. 35. № 12. P. 2210223. https://doi.org/10.1002/adma.202210223
19. Mali S.S., Patil J.V., Shao J.Y. et al. Phase-heterojunction all-inorganic perovskite solar cells surpassing 21.5% efficiency // Nature Energy. 2023. V. 8. № 9. P. 989–1001. https://doi.org/10.1038/s41560-023-01310-y
20. Stangl R., Kriegel M., Schmidt M. AFORS-HET, Version 2.2, a numerical computer program for simulation of heterojunction solar cells and measurements // 2006 IEEE 4th World Conference on Photovoltaic Energy Conference. 2006. V. 2. P. 1350–1353. https://doi.org/10.1109/WCPEC.2006.279681
21. Wang T., Wang P., Ding K. et al. Numerical simulation of carrier transporting layer free planar perovskite cells // Optik. 2019. V. 179. P. 1019–1026. https://doi.org/10.1016/j.ijleo.2018.11.050
22. Gagandeep G., Singh M., Kumar R. Simulation of perovskite solar cell with graphene as hole transporting material // AIP Conference Proceedings. 2019. V. 2115. № 1. P. 030548-1–030548-4. https://doi.org/10.1063/1.5113387
23. Shakoor A., Nowsherwan G.A., Aamir M.F. et al. Performance evaluation of solar cells by different simulating softwares. Solar PV panels-recent advances and future prospects // IntechOpen. 2023. V. 7. P. 1–21. https://doi.org/10.5772/intechopen.111639
24. Afsari M., Boochani A., Hantezadeh M. Electronic, optical and elastic properties of cubic perovskite CsPbI3: Using first principles study // Optik. 2016. V. 127. № 23. P. 11433–11443. https://doi.org/10.1016/j.ijleo.2016.09.013
25. Li B., Zhang Y., Fu L. et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells // Nature communications. 2018. V. 9. № 1. P. 1076. https://doi.org/10.1038/s41467-018-03169-0
26. Landi G., Neitzert H.C., Barone C. et al. Correlation between electronic defect states distribution and device performance of perovskite solar cells // Advanced Science. 2017. V. 4. № 10. P. 1700183. https://doi.org/10.1002/advs.201700183
27. Laban W.A., Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells // Energy & Environmental Science. 2013. V. 6. № 11. P. 3249–3253. https://doi.org/10.1039/C3EE42282H
28. Sutton R.J., Filip M.R., Haghighirad A. A. et al. Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment // ACS Energy Letters. 2018. V. 3. № 8. P. 1787–1794. https://doi.org/10.1021/acsenergylett. 8b00672
29. Dastidar S., Li S., Smolin S.Y. et al. Slow electron–hole recombination in lead iodide perovskites does not require a molecular dipole // ACS energy letters. 2017. V. 2. № 10. P. 2239–2244. https://doi.org/10.1021/acsenergylett.7b00606
30. Whitcher T.J., Zhu J.X., Chi X. et al. Importance of electronic correlations and unusual excitonic effects in formamidinium lead halide perovskites // Physical Review X. 2018. V. 8. № 2. P. 021034. https://doi.org/10.1103/PhysRevX.8.021034
31. Stoumpos C.C., Malliakas C.D., Peters J.A. et al. Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection // Crystal growth & design. 2013. V. 13. № 7. P. 2722–2727. https:// doi.org/10.1021/cg400645t
32. Chen J. Morrow D.J., Fu Y. et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3) // Journal of the American Chemical Society. 2017. V. 139. № 38. P. 13525–13532. https://doi.org/10.1021/
jacs.7b07506
33. Yang Z., Surrente A., Galkowski K. et al. Impact of the halide cage on the electronic properties of fully inorganic cesium lead halide perovskites // ACS Energy letters. 2017. V. 2. № 7. P. 1621–1627. https://doi.org/10.1021/acsenergylett.7b00416
34. Gabelloni F., Biccari F, Falsini N. et al. Long-living nonlinear behavior in CsPbBr3 carrier recombination dynamics // Nanophotonics. 2019. V. 8. № 9. P. 1447–1455. https://doi.org/10.1515/nanoph-2019-0013
35. Srimath Kandada A.R., Neutzner S., D’Innocenzo V. et al. Nonlinear carrier interactions in lead halide perovskites and the role of defects // Journal of the American Chemical Society. 2016. V. 138. № 41. P. 13604–13611. https://doi.org/10.1021/jacs.6b06463
36. Qurashi A. Metal сhalcogenide nanostructures for renewable energy applications. Hoboken: John Wiley & Sons, 2014. 307 p.
37. Rey G., Ternon C., Modreanu M. et al. Electron scattering mechanisms in fluorine-doped SnO2 thin films // Journal of Applied Physics. 2013. November. V. 114. № 18. P. 183713. https://doi.org/10.1063/1.4829672
38. Hossain M.I., Alharbi F.H., Tabet N. Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells // Solar Energy. 2015. V. 120. P. 370–380. https://doi.org/10.1016/j.solener.2015. 07.040
39. Fuke N., Fukui A., Islam A. et al. Influence of TiO2/electrode interface on electron transport properties in back contact dye-sensitized solar cells // Solar energy materials and solar cells. 2009. V. 93. № 6–7. P. 720–724. https://doi.org/10.1016/j.solmat.2008. 09.037
40. Szydlo N., Poirier R. I-V and C-V characteristics of Au/TiO2 Schottky diodes // Journal of Applied Physics. 1980. V. 51. № 6. P. 3310–3312. https://doi.org/10.1063/1.328037

41. Lira-Cantu M. The future of semiconductor oxides in next-generation solar cells. Amsterdam: Elsevier, 2017. 544 p.
42. Yamada Y., Kanemitsu Y. Blue photoluminescence of highly photoexcited rutile TiO2: Nearly degenerate conduction-band effects // Physical Review B. 2010. V. 82. № 11. P. 113103. https://doi.org/10.1103/PhysRevB.82.113103
43. Hossain M.K., Rubel M.H.K., Toki G.I. et al. Effect of various electron and hole transport layers on the performance of CsPbI3-based perovskite solar cells: A numerical investigation in DFT, SCAPS-1D, and wxAMPS frameworks // ACS omega. 2022. V. 7. № 47. P. 43210–43230. https://doi.org/10.1021/acsomega.2c05912
44. Yao Z., Zhao W., Liu S. F. Stability of the CsPbI3 perovskite: From fundamentals to improvements // Journal of Materials Chemistry A. 2021. V. 9. № 18. P. 11124–11144. https://doi.org/10.1039/D1TA01252E
45. Dastidar S., Hawley C.J., Dillon A.D. et al. Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide // The journal of physical chemistry letters. 2017. V. 8. № 6. P. 1278–1282. https://doi.org/10.1021/acs.jpclett.7b00134
46. Pathak S.K., Abate A., Ruckdeschel P. et al. Performance and stability enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2 // Advanced Functional Materials. 2014. V. 24. № 38. P. 6046–6055. https://doi.org/10.1002/adfm.201401658
47. Sanchez R.S., Mas-Marza E. Light-induced effects on Spiro-OMeTAD films and hybrid lead halide perovskite solar cells // Solar Energy Materials and Solar Cells. 2016. V. 158. P. 189–194. https://doi.org/10.1016/j.solmat.2016.03.024
48. Mastryukov M.V., Son A.G., Tekshina E.V. et al. Effect of the purity of the precursor SnI2 on the optical properties of CsSnI3 perovskite thin films // Russian Journal of Inorganic Chemistry. 2022. V. 67. № 10. P. 1652–1657. https://doi.org/10.1134/S0036023622100540
49. Patel M.S., Chaudhary D.K., Kumar P. et al. Fullerene (C60)-modulated surface evolution in CH3NH3PbI3 and its role in controlling the performance of inverted perovskite solar cells // Journal of Materials Science: Materials in Electronics. 2020. V. 31. P. 11150–11158. https://doi.org/10.1007/s10854-020-03664-5
50. Wu C., Wang K., Yan Y. et al. Fullerene polymer complex inducing dipole electric field for stable perovskite solar cells // Advanced Functional Materials. 2019. V. 29. № 12. P. 1804419. https://doi.org/10.1002/adfm. 201804419
51. Tai M., Lau C.F.J., Lin H. et al. Advances in phase stability of cesium lead halide perovskites // Solar RRL. 2020. V. 4. № 12. P. 2000495. https://doi.org/10.1002/solr.202000495
52. Kim D.W., Noh Y.W., Han J. et al. Efficient MAPbI3-based perovskite solar cells exceeding 21% efficiency via aging treatment //Chemical Engineering Journal. 2023. V. 475. P. 146451. https://doi.org/10.1016/j. cej.2023.146451
53. Hu J., Yang L., Zhang J. A review on strategies to fabricate and stabilize phase-pure α-FAPbI3 perovskite solar cells // Solar RRL. 2023. V. 7. № 13. P. 2300187. https://doi.org/10.1002/solr.202300187
54. Yang M., Wang H., Cai W. et al. Mixed-halide inorganic perovskite solar cells: Opportunities and challenges // Advanced Optical Materials. 2023. V. 11. № 20. P. 2301052. https://doi.org/10.1002/adom.202301052