DOI: 10.17586/1023-5086-2025-92-01-90-99
УДК: 621.793.1
Исследование структурных и оптических свойств пленок ZnO, полученных методом магнетронного распыления при комнатной температуре
Саенко А.В., Билык Г.Е., Жейц В.В., Хубежов С.А., Вакулов З.Е., Смирнов В.А. Исследование структурных и оптических свойств пленок ZnO, полученных методом магнетронного распыления при комнатной температуре // Оптический журнал. 2025. Т. 92. № 1. С. 90–99. http://doi.org/10.17586/1023-5086-2025-92-01-90-99
Saenko A.V., Bilyk G.E., Zheits V.V., Khubezhov S.A., Vakulov Z.E., Smirnov V.A. Study of the structural and optical properties of ZnO films deposited by magnetron sputtering at room temperature [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 1. P. 90–99. http://doi.org/10.17586/1023-5086-2025-92-01-90-99
Предмет исследования. Нанокристаллические пленки ZnO на стеклянных и гибких подложках для применения в солнечной энергетике, прозрачной и гибкой электронике. Цель работы. Определение оптимальной мощности высокочастотного магнетронного распыления для получения однородной кристаллической структуры с низкой шероховатостью поверхности при осаждении пленок ZnO. Метод. Осаждение пленок ZnO осуществлялось методом высокочастотного магнетронного распыления керамической мишени в бескислородной среде при комнатной температуре. Исследование пленок ZnO выполнялось методами растровой электронной микроскопии, атомно-силовой микроскопии, рентгеновской дифракции, рентгеновской фотоэлектронной спектроскопии и спектрофотометрии. Основные результаты. Показано, что зависимость скорости осаждения пленок ZnO от мощности высокочастотного магнетронного распыления в бескислородной среде при комнатной температуре имеет линейный характер. Полученные пленки ZnO имеют нанокристаллическую структуру с доминирующим дифракционным пиком (002) для гексагональной структуры ZnO и преимущественным направлением роста кристаллитов перпендикулярно поверхности подложки. Показано, что возрастание мощности распыления от 25 до 100 Вт приводит к увеличению размера зерен от 12,8 до 35,7 нм и шероховатости поверхности пленок ZnO от 2,8 до 11,4 нм. Получено, что пленки ZnO имеют пропускание в видимой области спектра около 90% и оптическую ширину запрещенной зоны 3,27–3,28 эВ. Проведенные исследования рентгеновской фотоэлектронной спектроскопии подтвердили химический состав пленок ZnO. Практическая значимость. Установлено, что оптимальная мощность магнетронного распыления в бескислородной среде при комнатной температуре составляет 75 Вт, при которой пленки ZnO имеют относительно гладкую поверхность и однородную нанокристаллическую структуру, что является перспективным для эффективного разделения фотогенерированных электронно-дырочных пар и переноса носителей заряда к электродам в структурах солнечных элементов, в том числе на гибкой подложке.
пленки ZnO, магнетронное распыление, комнатная температура, мощность распыления, размер зерен, шероховатость поверхности, кристаллическая структура, оптическое пропускание
Коды OCIS: 310.0310, 160.0160, 180.0180
Список источников:1. Subhash Chander, Surya Kant Tripathi. Recent advancement in efficient metal oxide-based flexible perovskite solar cells: A short review // Materials Adv. 2022. V. 3. P. 7198–7211. https://doi.org/10.1039/ D2MA00700B
2. Wisz G., Sawicka-Chudy P., Wal A., et al. TiO2:ZnO/CuO thin film solar cells prepared via reactive direct-current (DC) magnetron sputtering // Appl. Materials Today. 2022. V. 29. P. 101673. https://doi.org/10.1016/j. apmt.2022.101673
3. Достанко А.П., Агеев О.А., Голосов Д.А. и др. Электрические и оптические свойства пленок оксида цинка, нанесенных методом ионно-лучевого распыления оксидной мишени // Физика и техника полупроводников. 2014. Т. 48. № 9. C. 1274–1279.
Dostanko A.P., Ageev O.A., Golosov D.A., et al. Electrical and optical properties of zinc-oxide films deposited by the ion-beam sputtering of an oxide target // Semiconductors. 2014. V. 48. P. 1242–1247. https://doi. org/10.1134/S1063782614090073
4. Саенко А.В., Билык Г.Е., Малюков С.П. Моделирование оксидного солнечного элемента на основе гетероперехода ZnO/Cu2O // Прикладная физика. 2023. № 4. C. 66–77. https://doi.org/10.51368/1996-0948-2023-4-66-77
Saenko A.V., Bilyk G.E., Malyukov S.P. Modeling of an oxide solar cell based on a ZnO/Cu2O heterojunction // Appl. Phys. 2023. № 4. P. 66–77. https://doi. org/ 10.51368/1996-0948-2023-4-66-77
5. Kaim Paulina, Lukaszkowicz Krzysztof, Szindler Marek, et al. The influence of magnetron sputtering process temperature on ZnO thin-film properties // Coatings. 2021. V. 11. P. 1507. https://doi.org/10.3390/ coatings11121507
6. Kavindra Kandpal, Jitendra Singh, Navneet Gupta, et al. Effect of thickness on the properties of ZnO thin films prepared by reactive RF sputtering // J. Materials Sci.: Materials in Electronics. 2018. V. 29. P. 14501–14507. https://doi.org/10.1007/s10854-018-9584-0
7. Абдуев А.Х., Ахмедов А.К., Асваров А.Ш. и др. Прозрачные проводящие слои на основе ZnO, полученные магнетронным распылением композитной металлокерамической мишени ZnO:Ga-Zn: часть 2 // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2021. № 2. С. 27–33. https:// doi.org/10.31857/ S1028096021010039
Abduev A.K., Akhmedov A.K., Asvarov A.S., et al. ZnO-based transparent conductive layers obtained by the magnetron sputtering of a composite cermet ZnO:Ga-Zn target: Part 2 // J. Surface Investigation. X-Ray, Synchrotron and Neutron Techniques. 2021. V. 15. P. 121–127. https://doi.org/10.1134/ S1027451021010031
8. Shinho Cho. Effects of growth temperature on the properties of ZnO thin films grown by radio-frequency magnetron sputtering // Trans. on Electrical and Electronic Materials. 2009. V. 10. № 6. P. 185–188. https:// doi.org/10.4313/TEEM.2009.10.6.185
9. Tominov R.V., Vakulov Z.E., Avilov V.I., et al. Synthesis and memristor effect of a forming-free ZnO nanocrystalline films // Nanomaterials. 2020. V. 10. P. 1007. https://doi.org/10.3390/nano10051007
10. Najeeb Al-Khalli, Mohamed F. Aly Aboud, Abdulaziz A. Bagabas, et al. Structural, optical, and electrical characteristics of thermal treated ZnO thin films deposited by RF sputtering on glass substrates // Materials Trans. 2021. V. 62. № 7. P. 915–920. https://doi.org/10.2320/matertrans.MT-M2020350
11. Spasova S., Dikov Hr., Ganchev M. Preparation and characterization of RF sputtered ZnO layers for application in thin films solar cells // J. Phys.: Conf. Ser. 2023. V. 2436. P. 012017. https://doi.org/10.1088/ 1742-6596/2436/1/012017
12. Саенко А.В., Вакулов З.Е., Климин В.С. и др. Влияние мощности магнетронного распыления на осаждение пленок ITO при комнатной температуре // Микроэлектроника. 2023. Т. 52. № 4. С. 329–335. https://doi.org/10.31857/S0544126923700394
Saenko A.V., Vakulov Z.E., Klimin V.S., et al. Effect of magnetron sputtering power on ITO film deposition at room temperature // Russian Microelectronics. 2023. V. 52. № 4. P. 297–302. https://doi.org/10.1134/S1063739723700452
13. Агекян В.Ф., Борисов Е.В., Гудовских А.С. и др. Формирование кристаллических слоев Cu2O и ZnO методом магнетронного распыления и их оптическая характеризация // Физика и техника полупроводников. 2018. Т. 52. № 3. P. 402–408. https://doi.org/10.21883/FTP.2018.03.45629.8682
Agekyan V.F., Borisov E.V., Gudovskikh A.S., et al. Formation of Cu2O and ZnO crystal layers by magnetron assisted sputtering and their optical characterization // Semiconductors. 2018. V. 52. P. 383–389. https://doi.org/10.1134/S1063782618030028
14. Mohammed Rasheed, Regis Barille. Room temperature deposition of ZnO and Al:ZnO ultrathin films on glass and PET substrates by DC sputtering technique // Optical and Quantum Electronics. 2017. V. 49. P. 190. https://doi.org/10.1007/ s11082-017-1030-7
15. Li Gong, Yun-Zhen Liu, Fang-Yang Liu, et al. Roomtemperature deposition of flexible transparent conductive Ga-doped ZnO thin films by magnetron sputtering on polymer substrates // J. Materials Sci.: Materials in Electronics. 2017. V. 28. P. 6093–6098. https://doi.org/10.1007/ s10854-016-6286-3
16. Hajara P., Priya Rose T., Saji K.J. Effect of substrate temperature and RF power on the structural and optical properties of sputtered ZnO thin films // J. Phys.: Conf. Ser. 2022. V. 2357. P. 012018. https://doi.org/ 10.1088/1742-6596/2357/1/012018
17. Шомахов З.В., Налимова С.С., Бобков А.А. и др. Рентгеновская фотоэлектронная спектроскопия