DOI: 10.17586/1023-5086-2025-92-03-5-31
УДК: 535.8+004.383.5+004.383.8+004.93'12
Оптические дифракционные корреляторы изображений: краткий очерк развития и новейшие достижения. Обзор
Стариков Р.С. Оптические дифракционные корреляторы изображений: краткий очерк развития и новейшие достижения. Обзор // Оптический журнал. 2025. Т. 92. № 3. С. 5–31. http://doi.org/10.17586/1023-5086-2025-92-03-5-31
Starikov R.S. Optical diffractive image correlators: A brief history and newest achievements. Review [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 3. P. 5–31. http://doi.org/10.17586/1023-5086-2025-92-03-5-31
Предмет исследования. Обзор работ в области создания и применения оптических дифракционных корреляторов двумерных пространственных сигналов. Цель работы. Систематизация сведений о методах и системах обработки информации, основанных на использовании оптических дифракционных корреляторов. Метод. В основе рассмотренных в обзоре методов лежат возможности формирования и фильтрации пространственного спектра изображений в оптических системах. Основные результаты. Представлен обзор работ в области оптических дифракционных корреляторов изображений. Статьи, посвященные рассматриваемой теме, представлены последовательно по хронологии и областям применения. Обсуждаются важнейшие, по мнению автора настоящего обзора, результаты, достигнутые в данном направлении. Практическая значимость. Обзор будет полезен как исследователям, работающим в областях фотоники и оптической обработки информации, так и читателям, специализирующимся в смежных направлениях.
оптические дифракционные корреляторы, оптическая обработка информации, распознавание изображений, оптико-цифровые системы, пространственная фильтрация, голография, модуляция света
Благодарность:исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-12-50315.
Коды OCIS: 070.4550, 070.5010, 100.1160, 100.3005, 100.3008, 100.4550, 100.5010, 100.4996, 200.4260
Список источников:1. Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung [auf Deutsch] // Archiv fur Mikroskopische Anatomie. 1873. № 9. P. 413. https://doi.org/10.1007/BF02956173
2. Porter A. XII. On the diffraction theory of microscopic vision // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1906. V. 11. № 61. P. 154. https://doi.org/10.1080/14786440609463433
3. Duffieux P. L'Intégrale de Fourier et ses Applications à l'Optique [en français]. Faculté des Sciences Besançon, Chez l'Auteur, France, 1946. 232 p.
4. Elias P. Optics and communication theory // JOSA. 1953. V. 43. № 4. P. 229. https://doi.org/10.1364/JOSA. 43.000229
5. O'Neill E. Spatial filtering in optics // IRE. Trans. Informat. Theory. 1956. № 2. P. 56. https://doi.org/10.1109/TIT.1956.1056785
6. Cutrona L., Porcello L., Leith E., et al. Optical data processing and filtering systems // IEEE Trans. Inf. Th. 1960. V. 6. № 3. P. 386. https://doi.org/10.1109/tit.1960.1057566
7. McLachlan D. The role of optics in applying correlation functions to pattern recognition // JOSA. 1962. V. 52. № 4. Р. 454. https://doi.org/10.1364/josa.52.000454
8. Marechal A. in Optical Processing of Information / Eds. Pollack D.K., Koester C.J., Tippett J.T. Spartan. Baltimore, 1963. 286 p.
9. Lugt A. Signal detection by complex spatial filtering // IEEE Trans. Inf. Th. 1964. V. 10. № 2. P. 139–145. https://doi.org/10.1109/TIT.1964.1053650
10. Weaver C., Goodman J. Technique for optically convolving two functions // Appl. Opt. 1966. V. 5. P. 1248. https://doi.org/10.1364/AO.5.001248
11. Rau J. Detection of differences in real distributions // JOSA. 1966. V. 56. P. 1490. https://doi.org/10.1364/ JOSA.56.001490
12. Lowenthal S., Werts A. Filtration of spacial sequences in incoherent light with aid of holograms // Comptes rendus hebdomadaires des seances de l'Académie des sciences (France). Serie B. 1968. V. 266. № 9. P. 542.
13. Lohmann A. Matched filtering with self-luminous objects // Appl. Opt. 1968. V. 7. P. 561_1. https://doi.org/10.1364/AO.7.0561_1
14. Bykovsky Yu., Markilov A., Smazheliuk M., et al. Optical computing by double transformation of spatial coherence of light // Proc. SPIE. 1988. V. 963. P. 354. https://doi.org/10.1117/12.947913
15. Pe’er A., Wang D., Lohmann A., et al. Optical correlation with totally incoherent light // Opt. Lett. 1999. V. 24. P. 1469. https://doi.org/10.1364/OL.24.001469
16. Selected papers on optical correlators / Ed. Suganda Jutamulia // SPIE Volume MS76 ISBN: 9780819412935. 1993. 726 p.
17. Selected papers on optical pattern recognition using joint transform correlation / Ed. Alam M.S. // SPIE Volume MS157 ISBN: 9780819434708. 1999. 658 p.
18. Brown B., Lohmann A. Complex spatial filtering with binary masks // Appl. Opt. 1966. V. 5. P. 967. https://doi.org/10.1364/AO.5.000967
19. Kozma A., Kelly D. Spatial filtering for detection of signals submerged in noise // Appl. Opt. 1965. V. 4. P. 387. https://doi.org/10.1364/AO.4.000387
20. Caulfield H.-J., Maloney W. Improved discrimination in optical character recognition // Appl. Opt. 1969. V. 8. P. 2354. https://doi.org/10.1364/AO.8.002354
21. Casasent D., Psaltis D. Position, rotation, and scale invariant optical correlation // Appl. Opt. 1976. V. 15. P. 1795. https://doi.org/10.1364/AO.15.001795
22. Casasent D., Furman A. Sources of correlation degradation // Appl. Opt. 1977. V. 16. P. 1652. https://doi.org/10.1364/AO.16.001652
23. Casasent D., Psaltis D. New optical transforms for pattern recognition // Proc. IEEE. 1977. V. 65. № 1. P. 77. https://doi.org/10.1109/PROC.1977.10432
24. Vijaya Kumar B.V.K., Casasent D. Space-blur bandwidth product in correlator performance evaluation // JOSA. 1980. V. 70. P. 103. https://doi.org/10.1364/JOSA.70.000103
25. Hester C., Casasent D. Multivariant technique for multiclass pattern recognition // Appl. Opt. 1980. V. 19. P. 1758. https://doi.org/10.1364/AO.19.001758
26. Hsu Y., Arsenault H.-H. Optical pattern recognition using circular harmonic expansion // Appl. Opt. 1982. V. 21. P. 4016. https://doi.org/10.1364/AO.21. 004016
27. Horner J. Light utilization in optical correlators // Appl. Opt. 1982. V. 21. P. 4511. https://doi.org/10.1364/AO.21.004511
28. Flannery D., Horner J. Fourier optical signal processors // Proc. IEEE. 1989. V. 77. № 10. P. 1511–1527. https://doi.org/10.1109/5.40666
Флэннери Д., Хорнер Д. Оптические фурье-процессоры сигналов // ТИИЭР. 1989. Т. 77. № 10. С. 138
29. Gara A. Real-time tracking of moving objects by optical correlation // Appl. Opt. 1979. V. 18. P. 172. https:// doi.org/10.1364/AO.18.000172
30. Bykovsky Yu., Larkin A., Markilov A., et al. Holographic processing of track chamber data // Nucl. Instr. and Methods. 1975. V. 131. № 1. P. 129–132. https://doi.org/10.1016/0029-554X(75)90367-5
31. Duthie J., Upatnieks J. Compact real-time coherent optical correlators // Opt. Eng. 1984. V. 23. Р. 230107. https://doi.org/10.1117/12.7973243
32. Yu F.T.S., Lu X. A real-time programmable joint transform correlator // Opt. Commun. 1984. V. 52. P. 10. https://doi.org/10.1016/0030-4018(84)90065-8
33. Casasent D. Hybrid optical/digital image pattern recognition: A review // Proc. SPIE. 1985. V. 528. P. 64. https://doi.org/10.1117/12.946407
34. Gregory D., Kirsch J., Loudin J. Optical correlators: Optical computing that really works // Proc. SPIE. 1990. V. 1296. P. 2. https://doi.org/10.1117/12.21249
35. Yu F.T.S., Jutamulia S., Lin T., et al. Adaptive realtime pattern recognition using a liquid crystal TV based joint transform correlator // Appl. Opt. 1987. V. 26. P. 1370. https://doi.org/10.1364/AO.26.001370
36. Florence J., Gale R. Coherent optical correlator using a deformable mirror device spatial light modulator in the Fourier plane // Appl. Opt. 1988. V. 27. P. 2091. https://doi.org/10.1364/AO.27.002091
37. Sloan J., Holloway Jr.L. A self-serving optical correlator for tracking // Proc. SPIE. 1990. V. 1151. P. 307. https://doi.org/10.1117/12.962231
38. Lindberg P., Hester C. Challenge to demonstrate an optical pattern recognition system // Proc. SPIE. 1990. V. 1297. P. 72. https://doi.org/10.1117/12.21299
39. Washwell E., Gebelein R., Gheen G., et al. Miniature hybrid optical correlators: Device and system issues // Proc. SPIE. 1990. V. 1297. P. 64. https://doi.org/10.1117/12.21298
40. Strojnik M., Shumate M., Hartman R., et al. Miniaturized optical correlator // Proc. SPIE. 1990. V. 1347. P. 186. https://doi.org/10.1117/12.23408
41. Fielding K., Horner J., Makekau C. Optical fingerprint identification by binary joint transform correlation // Opt. Eng. 1991. V. 30. P. 1958. https://doi.org/10.1117/12.56030
42. Gebelein R., Connely S., Foo L. Advances in the optical design of miniaturized optical correlators // Proc. SPIE. 1991. V. 1564. P. 452. https://doi.org/10.1117/12.49732
43. Ryan V., Fielding K. Position-, scale-, and rotation-invariant photorefractive correlator // Proc. SPIE. 1991. V. 1564. P. 86. https://doi.org/10.1117/12.49699
44. Nekrasov V., Zborovsky A., Ivanov B., et al. Real-time coherent optical correlator for machine vision systems // Opt. Eng. 1992. V. 31. P. 789. https://doi.org/10.1117/12.56141
45. Curtis K., Psaltis D. Multichannel disk-based optical correlator // Proc. SPIE. 1993. V. 2026. P. 48. https://doi.org/10.1117/12.163602
46. Young R., Chatwin C., Scott B. High-speed hybrid optical/digital correlator system // Opt. Eng. 1993. V. 32. P. 2608. https://doi.org/10.1117/12.146387
47. Karins J., Mills S., Szegedi N., et al. Miniature ruggedized optical correlator for flight testing // Proc. SPIE. 1994. V. 2237. P. 48. https://doi.org/10.1117/12.169454
48. Bains S. Miniature optical correlator fits inside a PC // Laser Focus World. 1995. V. 31. № 12. P. 17. https://www.laserfocusworld.com/detectors-imaging/ article/16553331/optical-processing-miniature-opticalcorrelator-fits-inside-a-pc
49. Mendlovic D., Deutsch M., Ferreira C., et al. Singlechannel polychromatic pattern recognition by the use of a joint-transform correlator // Appl. Opt. 1996. V. 35. P. 6382. https://doi.org/10.1364/AO.35.006382
50. Hartman R., Farr K., McColgan M.W., et al. Correlation at sea // Proc. SPIE. 1997. V. 3073. P. 156. https://doi.org/10.1117/12.270360
51. O'Callaghan M., Ward D., Perlmutter S., et al. A highly integrated single-chip optical correlator // Proc. SPIE. 1998. V. 3466. P. 157. https://doi.org/10.1117/12.326778
52. Chao T.-H., Reyes G., Park Y. Grayscale optical correlator // Proc. SPIE. 1998. V. 3386. P. 60. https://doi.org/10.1117/12.304790
53. Carrott D., Mallaley G., Dydyk R., et al. Thirdgeneration miniature ruggedized optical correlator (MROCТМ) module // Proc. SPIE. 1998. V. 3386. P. 38. https://doi.org/10.1117/12.304786
54. Chao T.-H., Reyes G., Zhou H. Automatic target recognition field demonstration using a grayscale optical correlator // Proc. SPIE. 1999. V. 3715. P. 399. https://doi.org/10.1117/12.341323
55. Chao T.-H., Zhou H., Reyes G. 512×512 high-speed grayscale optical correlator // Proc. SPIE. 2000. V. 4043. P. 40. https://doi.org/10.1117/12.381617
56. Chao T.-H., Zhou H., Reyes G. Grayscale optical correlator for real-time onboard ATR // Proc. SPIE. 2001. V. 4387. P. 10. https://doi.org/10.1117/12.421138
57. Chao T.-H., Zhou H., Reyes G. Spacecraft navigation using a grayscale optical correlator // Proc. SPIE. 2002. V. 4734. P. 108. https://doi.org/10.1117/12.458405
58. Hartman R., Farr K. Demonstration of the ULTORТМ target recognition and tracking system // Proc. SPIE. 2003. V. 5106. P. 30. https://doi.org/10.1117/12.501400
59. Demoli N., Šariri K., Stanić Z., et al. Toolmarks identification using SEM images in an optoelectronic correlator device // Optik. 2004. V. 115. P. 487. https://doi.org/10.1078/0030-4026-00404
60. Ewing T., Serati S., Bauchert K. Optical correlator using four kilohertz analog spatial light modulators // Proc. SPIE. 2004. V. 5437. P. 123. https://doi.org/10.1117/12.547404
61. Tchernykh V., Dyblenko S., Janschek K., et al. Airborne test results for smart pushbroom imaging system with optoelectronic image correction // Proc. SPIE. 2004. V. 5234. P. 550. https://doi.org/10.1117/12.510712
62. Vijaya Kumar B.V.K. Tutorial survey of composite filter designs for optical correlators // Appl. Opt. 1992. V. 31. P. 4773. https://doi.org/10.1364/AO.31.004773
63. Vijaya Kumar B.V.K., Mahalanobis A., Juday R. Correlation pattern recognition. Cambridge, U.K.: Cambridge University Press, 2005. 390 p. ISBN: 9780511541087. https://doi.org/10.1017/CBO9780511541087
64. Burcham J., Vachon J. Cueing, tracking, and identification in a maritime environment using the ULTORTM optical processor // Proc. SPIE. 2005. V. 5780. P. 164. https://doi.org/10.1117/12.604063
65. Burcham J., Balch M., Granade S. A correlator-based video sensor for docking with the Hubble Space Telescope // Proc. SPIE. 2005. V. 5798. P. 130. https://doi.org/10.1117/12.606021
66. Chao T.-H., Lu T., Zhou Hanying. Recent progress on grayscale optical correlator for automatic target recognition // Proc. SPIE. 2006. V. 6245. P. 624503. https://doi.org/10.1117/12.673441
67. Butt J., Wilkinson T. Binary phase only reference for invariant pattern recognition with the joint transform correlator // Proc. SPIE. 2006. V. 6234. P. 62340J. https://doi.org/10.1117/12.666469
68. Heifetz A., Pati G., Shen J., et al. Shift-invariant real-time edge-enhanced vander lugt correlator using video-rate compatible photorefractive polymer // Appl. Opt. 2006. V. 45. P. 6148. https://doi.org/10.1364/AO.45.006148
69. Guo F., Wang H., Li L., et al. Infrared telephoto lens design of hybrid optoelectronic joint transform correlator // Proc. SPIE. 2007. V. 6834. P. 68343F. https://doi.org/10.1117/12.757581
70. Ni K., Qu Z., Cao L., et al. High accurate volume holographic correlator with 4000 parallel correlation channels // Proc. SPIE. 2007. V. 6827. P. 68271J. https://doi.org/10.1117/12.756670
71. Bergeron A., Bourqui P., Harnisch B. Lightweight compact optical correlator for spacecraft docking // Proc. SPIE. 2007. V. 6739. P. 67390E. https://doi.org/10.1117/12.738183
72. Aran A., Nishchal N., Beri V., et al. Log-polar transform-based wavelet-modified maximum average correlation height filter for distortion invariance in a hybrid digital-optical correlator // Appl. Opt. 2007. V. 46. P. 7970. https://doi.org/10.1364/AO.46.007970
73. Chao T.-H., Lu T. Grayscale optical correlator for CAD/CAC applications // Proc. SPIE. 2008. V. 6977. P. 697704. https://doi.org/10.1117/12.785873
74. Xiao G., Zhou P., Li X., et al. A novel compact parallel optical correlator // Proc. SPIE. 2009. V. 7513. P. 75131V. https://doi.org/10.1117/12.837947
75. Watanabe E., Naito A., Kodate K. Ultra-high-speed compact optical correlation system using holographic disc // Proc. SPIE. 2009. V. 7442. P. 74420X. https://doi.org/10.1117/12.828507
76. Chao T.-H., Lu T. Automatic target recognition (ATR) performance improvement using integrated grayscale optical correlator and neural network // Proc. SPIE. 2009. V. 7340. P. 734003. https://doi.org/10.1117/12.820948
77. Birch P., Gardezi A., Young R., et al. Volume holographic MACH correlator // Proc. SPIE. 2010. V. 7696. P. 76961L. https://doi.org/10.1117/12.848705
78. Yamamoto S., Kuboyama H., Arai S., et al. Compact slot-in-type optical correlator // Proc. SPIE. 2010. V. 7723. P. 77230B. https://doi.org/10.1117/12.853419
79. Lin T., Lu T., Braun H., et al. Optimization of a multistage ATR system for small target identification // Proc. SPIE. 2010. V. 7696. P. 76961Y. https://doi.org/10.1117/12.858165
80. Zeng X., Inoue T., Fukuchi N., et al. Parallel lensless optical correlator based on two phase-only spatial light modulators // Opt. Exp. 2011. V. 19. P. 12594. https://doi.org/10.1364/OE.19.012594
81. Chao T.-H., Lu T. Autonomous learning approach for automatic target recognition processor // Proc. SPIE. 2011. V. 8055. P. 805502. https://doi.org/10.1117/12.886145
82. Harasthy T., Ovseník Ľ., Turán J. Current summary of the practical using of optical correlators // Acta Electrotechn. Informat. 2012. V. 12. № 4. P. 30. https://doi.org/10.2478/v10198-012-0042-2
83. Manzur T., Zeller J., Serati S. Optical correlator based target detection, recognition, classification, and tracking // Appl. Opt. 2012. V. 51. P. 4976. https://doi.org/10.1364/AO.51.004976
84. Chao T.-H., Lu T. High-speed optical correlator with custom electronics interface design // Proc. SPIE. 2013. V. 8748. P. 874803. https://doi.org/10.1117/12.2018262
85. Watanabe E., Ikeda K., Kodate K. High-speed holographic correlation system for video identification on the internet // Proc. SPIE. 2013. V. 9042. P. 90420L. https://doi.org/10.1117/12.2038136
86. Xu P., Hong C., Cheng G., et al. Planar optical correlators integrated with binary optical lens // Opt. Exp. 2015. V. 23. P. 6773. https://doi.org/10.1364/OE.23.006773
87. Monjur M., Tseng S., Fouda M., et al. Experimental demonstration of the hybrid opto-electronic correlator for target recognition // Appl. Opt. 2017. V. 56. P. 2754. https://doi.org/10.1364/AO.56.002754
88. Ikeda K., Suzuki H., Watanabe E. Optical correlationbased cross-domain image retrieval system // Opt. Lett. 2017. V. 42. P. 2603. https://doi.org/10.1364/OL.42.002603
89. Jridi M., Napoléon T., Alfalou A. One lens optical correlation: Application to face recognition // Appl. Opt. 2018. V. 57. P. 2087. https://doi.org/10.1364/AO.57.002087
90. Gamboa J., Fouda M., Shahriar S. Demonstration of shift, scale, and rotation invariant target recognition using the hybrid opto-electronic correlator // Opt. Exp. 2019. V. 27. P. 16507. https://doi.org/10.1364/OE.27.016507
91. The multiply and Fourier transform unit: A microscale optical processor. Last Updated: J. Wilson, 2020. https://www.optalysys.com/
92. Meng X., Gao Y., Liu X. Computer vision aided optical correlator for SAR target recognition // IEEE IGARSS 2020. 2020. P. 1620. https://doi.org/10.1109/ IGARSS39084.2020.9324505
93. Photonic Computing for Massively Parallel AI March 2021 A White Pages https://www.lighton.ai 94. Dong J., Rafayelyan M., Krzakala F., et al. Optical reservoir computing using multiple light scattering for chaotic systems prediction // IEEE J. Select. Topics in Quant. Electron. 2020. V. 26. P. 7701012. https://doi. org/10.1109/JSTQE.2019.2936281
95. Gamboa J., Hamidfar T., Shen X., et al. Elimination of optical phase sensitivity in a shift, scale, and rotation invariant hybrid opto-electronic correlator via off-axis operation // Opt. Exp. 2023. V. 31. P. 5990. https://doi.org/10.1364/OE.484149
96. Shen X., Gamboa J., Hamidfar T., et al. Speed invariant opto-atomic spatio-temporal holographic correlator for automatic event recognition using the mellin transform // CLEO 2024 Technical Digest. 2024. JTh2A.186. https://doi.org/10.1364/CLEO_AT.2024. JTh2A.186
97. McClain Jr.J., Gregory D. Complex spatial light modulators in optical correlators // Proc. SPIE. 1999. V. 3715. P. 39. https://doi.org/10.1117/12.341294
98. Кулешов А., Шубников Е. Влияние нелинейности среды и пространственных ограничений фильтра на параметры сигнала в голографическом корреляторе // Опт. и спектрос. 1986. T. 60. № 3. C. 606–609.
Kuleshov A., Shubnikov E. Influence of the medium nonlinearity and spatial limitations of the filter on the parameters of the signal in a holographic correlator [in Russian] // Opt. Speсtr. 1986. V. 60. № 3. P. 606–609.
99. Javidi B. Nonlinear joint power spectrum based optical correlation // Appl. Opt. 1989. V. 28. P. 2358. https://doi.org/10.1364/AO.28.002358
100. Alam M. Karim M. Fringe-adjusted joint transform correlation // Appl. Opt. 1993. V. 32. P. 4344. https://doi.org/10.1364/AO.32.004344
101. Inbar H., Mendlovic D., Marom E. Error-diffusion binarization for joint transform correlators // Appl. Opt. 1993. V. 32. P. 707. https://doi.org/10.1364/AO.32.000707
102. Fisher J., Principe J. A nonlinear extension of the MACE filter // Neur. Netw. 1995. V. 8. P. 1131. https:// doi.org/10.1016/0893-6080(95)00060-7
103. Rosen J. Three-dimensional optical Fourier transform and correlation // Opt. Lett. 1997. V. 22. P. 964. https://doi.org/10.1364/OL.22.000964
104. Arsenault H.-H., García-Martínez P. Intensityinvariant nonlinear filtering for detection in camouflage // Appl. Opt. 2005. V. 44. P. 5483. https://doi. org/10.1364/AO.44.005483
105. Patnaik R., Casasent D. Automated distortion-invariant filter synthesis and training set selection (auto-Minace) // Proc. SPIE. 2006. V. 6245. Р. 624507. https://doi.org/10.1117/12.673443
106. Patnaik R., Casasent D. MSTAR object classification and confuser and clutter rejection using Minace filters // Proc. SPIE. 2006. V. 6234. Р. 62340S. https:// doi.org/10.1117/12.663127
107. Casasent D., Patnaik R. Minace filter tests on the Comanche IR database // Proc. SPIE. 2007. V. 6574. Р. 65740H. https://doi.org/10.1117/12.719069
108. Casasent D., Patnaik R. Analysis of kernel distortion-invariant filters // Proc. SPIE. 2007. V. 6764. Р. 67640Y. https://doi.org/10.1117/12.734820
109. Kerekes R., Vijaya Kumar B.V.K. Selecting a composite correlation filter design: A survey and comparative study // Opt. Eng. 2008. V. 47. Р. 067202. https:// doi.org/10.1117/1.2943217
110. Bolme D., Beveridge J., Draper B., et al. Visual object tracking using adaptive correlation filters // 2010 IEEE CVPR. 2010. P. 2544. https://doi.org/10.1109/CVPR.2010.5539960
111. Widjaja J. Wavelet filter for improving detection performance of compression-based joint transform correlator // Appl. Opt. 2010. V. 49. P. 5768. https://doi.org/10.1364/AO.49.005768
112. Jeong M.-H. Color pattern recognition with recombined single input channel joint transform correlator // J. Opt. Soc. Korea. 2011. V. 15. P. 140. https://doi.org/10.3807/JOSK.2011.15.2.140
113. Alam M., Goh S., Dacharaju S. Three-dimensional color pattern recognition using fringe-adjusted joint transform correlation with CIE lab coordinates // IEEE Trans. Instr. Measur. 2010. V. 59. P. 2176. https://doi.org/10.1109/TIM.2009.2031384
114. Alkandri A., Gardezi A., Bangalore N., et al. Automatic parameter adjustment of difference of Gaussian (DoG) filter to improve OT-MACH filter performance for target recognition applications // Proc. SPIE. 2011. V. 8185. P. 81850M. https://doi.org/10.1117/12.897309
115. Alkandri A., Bangalore N., Gardezi A., et al. Improving OT-MACH filter performance for target recognition applications with the use of a Rayleigh distribution filter // Proc. SPIE. 2012. V. 8398. P. 83980D. https://doi.org/10.1117/12.918756
116. Sidike P., Alam M. Spectral fringe-adjusted joint transform correlation based efficient object classification in hyperspectral imagery // Proc. SPIE. 2013. V. 8748. P. 87480T. https://doi.org/10.1117/12.2018256
117. Galoogahi H., Sim T., Lucey S. Multi-channel correlation filters // 2013 IEEE ICCV. 2013. P. 3072. https:// doi.org/10.1109/ICCV.2013.381
118. Campos J., Moreno I., Nicolas J., et al. Uses of spatial light modulators for colour optical processing // Proc. SPIE. 2013. V. 8833. P. 88330A. https://doi.org/10.1117/12.2023641
119. Diaz-Ramirez V., Picos K., Kober V. Target tracking in nonuniform illumination conditions using locally adaptive correlation filters // Opt. Commun. 2014. V. 323. P. 32. https://doi.org/10.1016/j.optcom.2014.02.063
120. Vijaya Kumar B.V.K., Fernandez J., Rodriguez A., et al. Recent advances in correlation filter theory and application // Proc. SPIE. 2014. V. 9094. P. 909404. https://doi.org/10.1117/12.2051719
121. Alam M., Khoury J., Banerjee P., et al. Performance evaluation of optimal filters for target detection using SAR imagery // Proc. SPIE. 2014. V. 9094. P. 90940C. https://doi.org/10.1117/12.2054358
122. Gardezi A., Qureshi T., Alkandri A., et al. Comparison of spatial domain optimal trade-off maximum average correlation height (OT-MACH) filter with scale invariant feature transform (SIFT) using images with poor contrast and large illumination gradient // Proc. SPIE. 2015. V. 9477. P. 947706. https://doi.org/10.1117/12.2177451
123. Diaz-Ramirez V., Cuevas A., Kober V., et al. Pattern recognition with composite correlation filters designed with multi-objective combinatorial optimization // Opt. Commun. 2015. V. 338. P. 77. https://doi.org/10.1016/j.optcom.2014.10.038
124. Lu T., Chao T.-H., Chen K., et al. Cross-correlation and image alignment for multi-band IR sensors // Proc. SPIE. 2016. V. 9845. P. 984505. https://doi.org/ 10.1117/12.2224694
125. Gardezi A., Umer T., Butt F., et al. Vehicle monitoring under vehicular ad-hoc networks (VANET) parameters employing illumination invariant correlation filters for the Pakistan motorway police // Proc. SPIE. 2016. V. 9845. P. 984508. https://doi.org/10.1117/12.2228295
126. He E., Fernandez J., Vijaya Kumar B.V.K., et al. Masked correlation filters for partially occluded face recognition // 2016 IEEE ICASSP. 2016. P. 1293. https://doi.org/10.1109/icassp.2016.7471885
127. Gaxiola L., Diaz-Ramirez V., Tapia J., et al. Target tracking with dynamically adaptive correlation // Opt. Commun. 2016. V. 365. P. 140. https://doi.org/10.1016/j.optcom.2015.11.077
128. Smereka J., Boddeti V., Vijaya Kumar B.V.K., et al. Stacked correlation filters for biometric verification // 2016 IEEE ICASSP. 2016. P. 2104. https://doi. org/10.1109/icassp.2016.7472048
129. Saumard M., El Bouz M., Aron M., et al. Nonparametric kernel smoothing classification to enhance optical correlation decision performances // Proc. SPIE. 2019. V. 10995. P. 109950C. https://doi.org/ 10.1117/12.2518840
130. Akbar N., Tehsin S., Rehman H., et al. Hardware design of correlation filters for target detection // Proc. SPIE. 2019. V. 10995. P. 109950E. https://doi.org/10.1117/12.2519497
131. Banerjee P., Abeywickrema U., Zhou H., et al. Taking correlation from 2D to 3D: Optical methods and performance evaluation // Proc. SPIE. 2019. V. 10995. P. 109950B. https://doi.org/10.1117/12.2520309
132. Picos K., Orozco-Rosas U., Diaz-Ramirez V. Demonstrating the robustness of frequency-domain correlation filters for 3D object recognition applications // Proc. SPIE. 2019. V. 11136. P. 111360O. https://doi.org/10.1117/12.2528944
133. Hernandez-Beltran J., Diaz-Ramirez V., Juarez-Salazar R. Adaptive matched filter for implicit-target recognition: Application in three-dimensional reconstruction // Appl. Opt. 2019. V. 58. P. 8920. https:// doi.org/10.1364/AO.58.008920
134. Akbar N., Tehsin S., Bilal A., et al. Detection of moving human using optimized correlation filters in homogeneous environments // Proc. SPIE. 2020. V. 11400. P. 114000P. https://doi.org/10.1117/12.2559578
135. Contreras-Gonzalez V., Diaz-Ramirez V., JuarezSalazar R. Facial landmark detection and tracking with dynamically adaptive matched filters // J.Electron. Imag. 2020. V. 29. P. 033004. https://doi.org/10.1117/1.JEI.29.3.033004
136. Castro-Valdez A., Álvarez-Borrego J., Solorza-Calderón S. Image correlation by one-dimensional signatures invariant to rotation, position, and scale using the radial Hilbert transform optimized // Appl. Opt. 2020. V. 59. P. D12. https://doi.org/10.1364/AO.381574
137. Diaz-Ramirez V., Juarez-Salazar R. Multiple object tracking in color scenes using composite-matched filtering with complex constrains // Proc. SPIE. 2021. V. 11841. P. 118410J. https://doi.org/10.1117/12. 2594941
138. Gaxiola L., Diaz-Ramirez V., Juarez-Salazar R. Performance evaluation of advanced correlation filters for printed character recognition // Proc. SPIE. 2023. V. 12673. P. 126730D. https://doi.org/10.1117/12.2676178
139. Kumar R., Nishchal N., Alfalou A. Improving the false alarm capability of the extended maximum average correlation height filter // Photonics. 2023. V. 10. P. 1096. https://doi.org/10.3390/photonics10101096
140. Lohmann A., Werlich H. Incoherent matched filtering with Fourier holograms // Appl. Opt. 1971. V. 10. P. 670. https://doi.org/10.1364/ao.10.000670
141. Furman A., Casasent D. Bipolar incoherent optical pattern recognition by carrier encoding // Appl. Opt. 1977. V. 18. P. 660. https://doi.org/10.1364/AO.18.000660
142. Potaturkin O. Incoherent diffraction correlator with a holographic filter // Appl. Opt. V. 18. P. 4203. https://doi.org/10.1364/AO.18.004203
143. Sherman R., Grieser D., Gamble F., et al. Hybrid incoherent optical pattern recognition system // Appl. Opt. 1983. V. 22. P. 3579. https://doi.org/10.1364/AO.22.003579
144. Yu F.T.S. Color image recognition by spectral-spatial matched filtering // Opt. Eng. 1984. V. 23. P. 690. https://doi.org/10.1117/12.7973364
145. Psaltis D., Neifeld M., Yamamura A. Incoherent correlators using optical memory disks // Opt. Lett. 1989. V. 14. P. 429. https://doi.org/10.1364/OL.14.000429
146. Mendlovic D., Zalevsky Z., Konforti N. Joint transform correlator with incoherent output // JOSA A. 1994. V. 11. P. 3201. https://doi.org/10.1364/JOSA A.11.003201
147. Bykovsky Y., Lyubchenko A., Markilov A., et al. Light spectrum and image structure correlator // Proc. SPIE. 1994. V. 2051. P. 969. https://doi.org/10.1117/12.166007
148. Bykovsky Y., Markilov A., Rodin V., et al. Noncoherent correlator with reflective volume holographic filter // Proc. SPIE. 1996. V. 2969. P. 454. https://doi.org/10.1117/12.262677
149. Bykovsky Y., Markilov A., Rodin V., et al. Incoherent holographic bipolar correlator for recognition of nonedge-enhanced images // Proc. SPIE. 1996. V. 2969. P. 635. https://doi.org/10.1117/12.262569
150. Amelyanov S., Bykovsky Y., Eloev E., et al. Incoherent holographic image correlator with 2D acoustooptic deflector as input device // Proc. SPIE. 1999. V. 3900. P. 334. https://doi.org/10.1117/12.364564
151. Родин В., Стариков С. Распознавание объектов по пространственным и спектральным параметрам в дисперсионных голографических корреляторах // Оптический журнал. 2012. Т. 79. № 4. С. 22–27.
Rodin V., Starikov S. Recognizing objects from the spatial and spectral parameters in dispersion holographic correlators // J. Opt. Technol. 2012. V. 79. № 4. Р. 212–216. https://doi.org/10.1364/JOT.79.000212
152. Andrés P., Climent V., Lancis J., et al. All-incoherent dispersion-compensated optical correlator // Opt. Lett. 1999. V. 24. P. 1331. https://doi.org/10.1364/OL.24.001331
153. Grycewicz T. Lensless joint transform correlator // Opt. Eng. 1997. V. 36. P. 2871. https://doi.org/10.1117/ 1.601471
154. Hermerschmidt A., Osten S., Krüger S., et al. Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution // Proc. SPIE. 2007. V. 6584. P. 65840E. https://doi.org/10.1117/12.722891
155. Lizana A., Moreno I., Márquez A., et al. Time fluctuations of the phase modulation in a liquid crystal on silicon display: Characterization and effects in diffractive optics // Opt. Exp. 2008. V. 16. P. 16711. https://doi.org/10.1364/OE.16.016711
156. Cheremkhin P., Evtikhiev N., Krasnov V., et al. Reduction of phase temporal fluctuations caused by digital voltage addressing in LC SLM "HoloEye PLUTO VIS" for holographic applications // Proc. SPIE. 2014. V. 9006. P. 900615. https://doi.org/10.1117/12.2037569
157. Goncharov D., Krasnov V., Ponomarev N., et al. Measurement of phase modulation of an amplitude liquid crystal spatial light modulator HoloEye LC 2002 by dual-beam interferometric method // Proc. SPIE. 2018. V. 10558. P. 105580Y. https://doi.org/10.1117/12.2290043
158. Refregier P. Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency // Opt. Lett. 1991. V. 16. P. 829. https://doi. org/10.1364/ol.16.000829
159. Vijaya Kumar B.V.K., Mahalanobis A., Song S., et al. Minimum squared error synthetic discriminant functions // Opt. Eng. 1992. V. 31. P. 915. https://doi.org/ 10.1117/12.56169
160. Evtikhiev N., Shaulskiy D., Zlokazov E., et al. Variants of minimum correlation energy filters: Comparative study // Proc. SPIE. 2012. V. 8398. P. 83980G. https://doi.org/10.1117/12.919644
161. Evtikhiev N., Starikov S., Shaulskiy D., et al. Invariant correlation filter with linear phase coefficient holographic realization in 4-F correlator // Opt. Eng. 2011. V. 50. P. 065803. https://doi.org/10.1117/1.3592518
162. Shaulskiy D., Evtikhiev N., Zlokazov E., et al. Variants of light modulation for MINACE filter implementation in 4-F correlators // Proc. SPIE. 2015. V. 9598. P. 95980T. https://doi.org/10.1117/12.2190700
163. Семенов Г., Корешев С., Павлов А. и др. Голографическая линза для оптического коррелятора // Опт. и спектрос. 1983. T. 55. № 5. C. 945.
Semenov G., Koreshev S., Pavlov A., et al. Holographic lens for optical correlator [in Russian] // Opt. Spectros. 1983. V. 55. № 5. P. 945.
164. Ghosh A., Lapis M., Aossey D. Planar integration of joint transform correlators // Electron. Lett. 1991. V. 27. P. 871. https://doi.org/10.1049/el:19910546
165. McAulay A., Wang J. Lensless 2D correlation experiments // Proc. SPIE. 1993. P. 1959. https://doi. org/10.1117/12.160311
166. Reinhorn S., Amitai Y., Friesem A. Compact planar optical correlator // Opt. Lett. 1997. V. 22. P. 925. https://doi.org/10.1364/OL.22.000925
167. Eckert W., Jahns J., Sinzinger S., et al. Design and fabrication of a compact planar-integrated optical correlator // Proc. LEOS ’97. P. 134. https://doi.org/ 10.1109/leos.1997.630555