УДК: 535-15, 544.17, 615.47:617-089, 616.1, 616.8-089, 617.7, 621.372.632, 621.373.826
Медицинские применения лазеров среднего инфракрасного диапазона. Проблемы и перспективы
Полный текст «Оптического журнала»
Полный текст на elibrary.ru
Публикация в Journal of Optical Technology
Серебряков В.А., Бойко Э.В., Петрищев Н.Н., Ян А.В. Медицинские применения лазеров среднего инфракрасного диапазона. Проблемы и перспективы // Оптический журнал. 2010. Т. 77. № 1. С. 9–23.
Serebryakov V.A., Boyko E.V., Petrishchev N.N., Yan A.V. Medical applications of mid-IR lasers. Problems and prospects [in Russian] // Opticheskii Zhurnal. 2010. V. 77. № 1. P. 9–23.
V. A. Serebryakov, É. V. Boĭko, N. N. Petrishchev, and A. V. Yan, "Medical applications of mid-IR lasers. Problems and prospects," Journal of Optical Technology. 77(1), 6-17 (2010). https://doi.org/10.1364/JOT.77.000006
Любое использование лазеров в медицине основано на компромиссе между эффективностью взаимодействия лазерного излучения с биологической тканью и сопутствующими коллатеральными эффектами, и, соответственно, требует подбора параметров, минимизирующих нежелательное повреждение ткани.
Разработка нового поколения широко перестраиваемых в среднем инфракрасном диапазоне спектра твердотельных лазеров с параметрической генерацией света, с комбинацией высокой интенсивности излучения и относительно низкой энергии импульса при высокой частоте повторения открывает новые возможности в малоинвазивной прецизионной лазерной хирургии, в первую очередь, в офтальмологии, нейро- и кардиохирургии.
лазер на свободных электронах, лазеры среднего ИК диапазона, параметрический генератор света, лазерная абляция, хирургия
Коды OCIS: 140.3070 , 170.1020, 170.3890, 190.4970
Список источников:1. Haglund R.F. Applications of Free Electron Lasers in biological sciences, medicine and material science // Photon-based Nanoscience and Nanobiotechnology/Ed. by Dubowski J.J., Tanev S. Netherlands: Springer, 2006. Р. 175–203.
2. Vogel А., Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues // Chem. Rev. 2003. V. 103. Р. 577–644.
3. Uhlhorn S.R. Free Electron Laser Ablation of Soft Tissue: The Effects of Chromophore and Pulse Characteristics on Ablation Mechanics // Dissertation. Nashville, Tennessee: Vanderbilt University, 2002. 103 р.
4. Jean B. Medical and surgical application of FELs // IEEE Particle Accelerator Conference. Dallas, TX, USA, 1–5 May 1995. V. 1. Р. 75–79.
5. Salz J.J. Corneal Laser Surgery. Philadelphia, PA: Mosby, 1995. 293 p.
6. Shori R.K., Walston A.A., Stafsudd O.M., Fried D., Walsh J.T. Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ = 2.94 μm // IEEE J. Sel Top in QE. 2001. V. 7. № 6. P. 959–970.
7. Apitz I., Vogel A. Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin // Appl. Phys. A. 2005. V. 81. P. 329–338.
8. Walsh J.T., Cummings J. P. Effect of the dynamic optical properties of water on midinfrared laser ablation // Lasers Surg. Med. 1994. V. 15. P. 295−305.
9. Wilmink G.J. Using optical imaging methods to assess laser-tissue interactions // Dissertation. Nashville, Tennessee: Vanderbilt University, 2007. 201 p.
10. Hutson M.S., Hauger S.A., Edwards G. Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free electron laser // Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2002. V. 65. P. 061906−061906−6.
11. Xiao Y., Guo M., Zhang P., Shanmugam G., Polavarapu P.L., Hutson M.S. Wavelength-Dependent Conformational Changes in Collagen after Mid-Infrared Laser Ablation of Cornea // Biophysical Journal. 2008. V. 94. № 4. P. 1359−1366.
12. Hutson M.S., Edwards G.S. Advances in the physical understanding of laser surgery at 6.45 microns // Proc. 26th International FEL Conf. Trieste, Italy, 2004. P. 648−653.
13. Mackanos M.A. The effect of pulse structure on soft tissue laser ablation at mid-IR wavelengths // Dissertation. Nashville, Tennessee: Vanderbilt University, 2004. 199 p.
14. Ellis D.L., Weisberg N. K., Chen J.S., Stricklin G.P., Reinisch L. Free electron laser wavelength specificity for cutaneous contraction // Lasers Surg. Med. 1999. V. 25. P. 1–7.
15. Joos R.K., Shah R.J., Robinson R.D., Shen J.H. Optic nerve sheath fenestration with endoscopic accessory instruments versus the free electron laser (FEL) // Lasers Surg. Med. 2006. V. 38. P. 846–851.
16. Shah M.J., Shen J.H., Joos K.M. Endoscopic free electron laser technique development for minimally invasive optic nerve sheath fenestration // Lasers Surg. Med. 2007. V. 39. P. 589–596.
17. McKenzie G., Beck C., Mittchll J., Jean B., Bryanston-Cross P. Confined Tissue Ablation for Vitrectomy: a study at FELIX // Proc. SPIE. 2001. V. 4247. P. 229–237.
18. Edwards G., Wagner W., Sokolow A., Pearlstein R. Pressure (mechanical) effects in infrared tissue ablation // Proc. SPIE. 2008. V. 6854. P. 685410–685410–12.
19. Hooper B.A., Maheshwari A., Curry A.C., Alter T.M. Catheter for diagnosis and therapy with infrared evanescent waves // Appl. Opt. 2003. V. 42(16). P. 3205–3214.
20. Ishii K., Tsukimoto H., Hazama H., Awazu K. Selective Treatment of Atherosclerotic Plaques Using Nanosecond Pulsed Laser with a Wavelength of 5.75 μm for Less-invasive Laser Angioplasty // Proc. SPIE. 2009. V. 7373. P. 73731E–73731E–5.
21. Youn J., Sweet P., Peavy G.M., Venugopalan V. Mid-IR laser ablation of articular and fibro-cartilage: A wavelength dependence study of thermal injury and crater morphology // Lasers Surg. Med. 2006. V. 38. № 3. P. 218–228.
22. Youn J., Sweet P., Peavy G.M. A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 μm // Lasers Surg. Med. 2007. V. 39. № 4. P. 332–340.
23. Payne J.T., Payne J.T., Venugopalan V. Comparison of Cortical Bone Ablations by Using Infrared Laser Wavelengths 2.9 to 9.2 μm // Lasers Surg. Med. 1999. V. 26. P. 421–434.
24. Ostertag M., McKinley J.T., Reinisch L., Harris D.M., Tolk N.H. Laser ablation as a function of the primary absorber in dentin // Lasers Surg. Med. 1997. V. 21. P. 384–394.
25. Spencer P., Payne J.M., Cobb C.M., Reinisch L., Peavy G.M., Drummer D.D., Suchman D.L., Swafford J.R. Effective Laser Ablation of Bone Based on the Absorption Characteristics of Water and Proteins // J. Periodontology. 1999. V. 70. P. 68–74.
26. Swift E. Free-electron laser etching of dental enamel // J. of Dentistry. 2001. V. 29. № 5. P. 347–353.
27. Kin F.C., Choi B., Vargas G., Hammer D.X., Sorg B., Pfefer T.J., Teichman J.M.H., Welch A.J., Jansen E.D. Free electron laser ablation of urinary calculi: an experimental study // IEEE J. Sel. Top. QE. 2001. V. 7. № 6. P. 1022–1033.
28. Платонов А.В., Солдатов A.Н., Филонов A.Г. Импульсный лазер на парах стронция // Квант. электрон. 1978. T. 5. № 1. C. 198–201.
29. Mackanos M.A., Simanovskii D., Joos K.M., Schwettman H.A., Jansen E.D. Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL) // Lasers Surg. Med. 2007. V. 39. P. 230–236.
30. Miyamoto K., Ito H. Wavelength-agile mid-IR (5–10 μm) generation using a Galvano-controlled KTP-OPO // Opt. Let. 2006. V. 32. № 3. P. 274–276.
31. Haakestad M.W., Arisholm G., Lippert E., Nicolas S., Rustad G., Stenersen K. High-pulse-energy mid-infrared laser source based on optical parametric amplification in ZnGeP2 // Opt. Exp. 2008. V. 16(18). P. 14263–14273.
32. Budni P.A., Ibach C. R., Setzler S.D., Pomeranz L.A., Lemons M.L., Ketteridge P.A., Gustafson E.J., Young Y.E., Schunemann P.G., Pollak T.M., Castro R.T., Chicklis E.P. 20 mJ, 3–5 μm & 2 mJ, 8 μm ZnGeP2 Optical Parametric Oscillators Pumped by a 2.09 μm Ho:YAG Laser // 16th Solid State and Diode Laser Technology Review. Albuquerque, New Mexico, 2003. P. 17.
33. Antipov O.L., Eremeykin O.N., Frolov Yu.N., Freidman G.I., Garanin S.G, Il’kaev R.I., Konyushkov A.P., Lazarenko V.I., Mischenko G.M., Savikin A.P., Sergeev A.M., Velikanov S.D., Volkov R.Yu. Mid-IR ZnGeP2 parametric oscillator with laser pumping at 2.1 μm // Mid-Infrared Coherent Sources and Applications (MICS 2005). Barcelona, Spain, 2005. № 10.
34. Dergachev A., Armstrong D., Smith A., Drake T., and Dubois M. High-power, high-energy ZGP OPA Pumped by a 2.05-μm Ho:YLF MOPA System // Proc. SPIE. 2008. V. 6875. P. 687507–687507–10.
35. Kuo P.S., Fejer M.M. Microstructured semiconductors for mid-infrared nonlinear optics // Mid-Infrared Coherent Sources and Applications / Ed. by Ebrahim-Zadeh M., Sorokina I.T. Netherlands: Springer, 2008. P. 149–168.