ITMO
en/ en

ISSN: 1023-5086

en/

ISSN: 1023-5086

Научно-технический

Оптический журнал

Полнотекстовый перевод журнала на английский язык издаётся Optica Publishing Group под названием “Journal of Optical Technology“

Подача статьи Подать статью
Больше информации Назад

Ultraviolet Excimer Radiation from Nonequilibrium Gas Discharges and its Application in Photophysics, Photochemistry and Photobiology

Ссылка для цитирования:

Kogelschatz U. Ultraviolet Excimer Radiation from Nonequilibrium Gas Discharges and its Application in Photophysics, Photochemistry and Photobiology [in English] // Opticheskii Zhurnal. 2012. V. 79. № 8. P. 55–69.

Ссылка на англоязычную версию:

U. Kogelschatz, "Ultraviolet excimer radiation from nonequilibrium gas discharges and its application in photophysics, photochemistry and photobiology," Journal of Optical Technology. 79(8),484-493 (2012). https://doi.org/10.1364/JOT.79.000484

Аннотация:

Narrowband UV and VUV excimer radiation can be generated in a variety of nonequilibrium gas discharges: dielectric barrier discharges, microhollow cathode discharges, arrays of microplasmas, corona discharges. Excimer lamps (excilamps) are now available for a large number of wavelengths and in various geometrical shapes. The availability of nearly monochromatic photon fluxes ranging in energy up to 15 eV resulted in a number of innovative photo-induced processes in photophysics, photochemistry and photobiology. This report focuses on progress made in the last decade.

Ключевые слова:

ultraviolet radiation, excimer fluorescence, photochemistry, materials processing, pollution control, phototherapy

Коды OCIS: 350.5400, 350.5130, 350.5610

Список источников:

1. Kogelschatz U. Silent-discharge driven excimer UV sources and their applications // Appl. Surf. Sci. 1992. V. 54. P. 410–423.

2. Boyd I.W., Zhang J.-Y., Kogelschatz U. Development and Applications of Excimer UV Lamps // Photo-Excited Processes, Diagnostics and Applications (PEPDA), Ed. Peled, A., Dordrecht: Kluwer Academic Publishers. 2003. P. 161–199.
 3. Lomaev M.I., Skakun V.S., Sosnin E.A., Tarasenko V.F., Shits D V., Erofeev M.V. Excilamps: efficient sources of spontaneous UV and VUV radiation // Phys.-Uspekhi. 2003. V. 46. № 2. P. 193–209.
 4. Kogelschatz U. Dielectric-barrier discharges: Their history, discharge physics and industrial applications // Plasma Chem. Plasma Process. 2003. V. 23. № 1. P. 1–46.
 5. Kogelschatz U. Excimer lamps: history, discharge physics, and industrial applications // Proc. SPIE. 2004. V. 5483. P. 272–286.
 6. Lomaev M.I., Sosnin E.A., Tarasenko V.F., Shits D.V., Skakun V.S., Erofeev M.V., Lisenko A.A. Capacitive and barrier discharge excilamps and their applications (Review) // Instrum. Exp. Tech. 2006. V. 49. № 5. P. 595–616.
 7. Oppenländer T. Mercury-free sources of VUV/UV radiation: application of modern excimer lamps (excilamps) for water and air treatment // J. Environm. Eng. Sci. 2007. V. 6. № 3. P. 253–264.
 8. Boichenko A.M., Lomaev M.I., Panchenko A.N., Sosnin E.A., Tarasenko V.F. The ultraviolet excilamps: physics, technology and applications. Tomsk: STT Publishing, 2011. 510 p. (in Russian). ISBN: 978-5-93629-433-4.
 9. Peng S., Ametepe J.D., Manos D.M. Analysis and kinetic model of a high-pressure KrI excimer emission in a novel capacitively coupled rf lamp// Appl. Phys. B. 2006. V. 83. № 4. P. 643–650.
 10. Beleznai S., Richter P., Balázs L. New modulated pulsed driving signal for efficient excitation of DBD discharges // Hakone XI, 2008. Proc. V. 2. P. 302–306.
 11. Ametepe J.D., Diggs J., Manos D.M., Kelley M.J. Characterization and modeling of a microwave driven xenon excimer lamp // J. Appl. Phys. 1999. V. 85. № 11. P. 7505–7510.
 12. Kitamura M., Mitsuka K., Sato M.A. Practical high-power excimer lamp excited by a microwave discharge // Appl. Surf. Sci. 2004. V. 79–80. P. 507–513.
 13. Sosnin E.A., Pikulev A.A., Tarasenko V.F. Optical characteristics of cylindrical exciplex and excimer lamps excited by microwave radiation // Tech. Phys. 2011. V. 56. № 4. P. 526–530.
 14. Yan J., El-Dakrouri A., Laroussi M., Gupta M.C. 121.6 nm radiation source for advanced lithography // J. Vac. Sci. Technol. B 2002. V. 20. № 6. P. 2574–2577.
 15. El-Dakrouri A., Yan J., Laroussi M., Gupta M.C., Badr Y. VUV emission from a novel DBD-based radiation source // J. Phys. D: Appl. Phys. 2002. V. 35. № 21. P. L109–L114.
 16. Sosnin E.A., Erofeev M.V., Tarasenko V.F., Shitz D.V. Capacitive discharge excilamps // Instr. Exp. Tech. 2002. V. 45. № 6. P. 838–839.
 17. Lomaev M.I., Sosnin E.A., Tarasenko V.F., Shits D.V., Skakun V.S., Erofeev M.V., Lisenko A.A. Capacitive and barrier discharge excilamps and their applications (Review) // Instrum. Exp. Techn. 2006. V. 49. № 5. P. 595–616.
 18. El-Habachi A., Schoenbach K.H. Generation of intense excimer radiation from high-pressure hollow cathode discharges // Appl. Phys. Lett. 1988. V. 73. № 7. P. 885–887.
 19. El-Habachi A., Schoenbach K.H. Emission of excimer radiation from direct current, high pressure hollow cathode discharges // Appl. Phys. Lett. 1988. V. 72. № 1. P. 22–24.
 20. Kurunczi P., Lopez J., Shah H., Becker K. Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions // Int. J. Mass Spectrom. 2005. V. 205. № 1–3. P. 277–283.
 21. Moselhy M., Shi W., Stark R.H., Schoenbach K.H. (Xenon) Excimer emission from pulsed microhollow cathode discharges // Appl. Phys. Lett. 2001. V. 79. № 9. P. 1240–1242.
 22. Boeuf J.P., Pitchford L.C., Schoenbach K.H. Predicted properties of microhollow cathode discharges in xenon // Appl. Phys. Lett. 2005. V. 86. № 7. P. 071501.
 23. Sankaran R.M., Giapis K.P., Moselhy M., Schoenbach K.H. Argon excimer emission from high-pressure microdischarges in metal capillaries // Appl. Phys. Lett. 2003. V. 83. № 23. P. 4728–4730.
 24. Zhu W., Takano N., Schoenbach K.H., Guru D., McLaren J., Heberlein J., May R., Cooper J.R. Direct current planar excimer source // J. Phys. D: Appl. Phys. 2007. V. 40. № 13. P. 3896–3906.
 25. Becker K.H., Schoenbach K., Eden J.G. Microplasmas and applications // J. Phys. D: Appl. Phys. 2006. V. 39. № 3. P. R55–R70.

26. Schoenbach K.H., Zhu W. High-Pressure Microdischarges - Sources of Ultraviolet Radiation // IEEE J. Quant. Electron. 2012. in print.
 27. Eden J.G., Park S.-J. Microcavity plasma devices and arrays: a new realm of plasma physics and photonic applications // Plasma Phys. Control. Fusion 2005. V. 47. № 12B. P. B83–B92.
 28. Park S.-J., Chen K.-F., Ostrom N.P., Eden J.G. 40 000 pixel arrays of ac-excited silicon microcavity plasma devices// Appl. Phys. Lett. 2005. V. 86. № 11. P. 111501.
 29. Salvermoser M., Murnick D.E. Efficient, stable, corona discharge 172 nm xenon excimer light source // J. Appl. Phys. 2003. V. 94. № 6. P. 3722–3731.
 30. Salvermoser M., Murnick D.E. High-efficiency, high-power, stable 172 nm xenon excimer light source // Appl. Phys. Lett. 2003. V. 83. № 10. P. 1932–1934.
 31. Wieser J., Murnick D.E., Ulrich A., Huggins H.A., Liddle A., Brown W.L. Vacuum ultraviolet rare gas excimer light source // Rev. Sci. Instrum. 1997. V. 68. № 3. P. 1360–1364.
 32. Wieser J., Ulrich A., Salvermoser M., Shaw H., Murnick D.E., Dahi H. Light sources using energy transfer from excimer to line radiation // Proc. SPIE 1998. V. 3403. P. 314–320.
 33. Fedenev A.V., Morozov A., Krücken R., Schoop S., Wieser J., Ulrich A. Applications of a broadband electronbeam pumped XUV radiation source// J. Phys. D: Appl. Phys. 2004. V. 37. № 11. P. 1586–1591.
 34. Morozov A., Heindl T., Krücken R., Ulrich A., Wieser J. Spatial distribution of fluorescent light emitted from neon and nitrogen excited by low energy electron beams // J. Appl. Phys. 2006. V. 100. № 9. P. 093305.
 35. Morozov A., Heindl T., Krücken R., Ulrich A., Wieser J. Conversion efficiencies of electron beam energy to vacuum ultraviolet light for Ne, Ar, Kr, and Xe excited with continuous electron beams // J. Appl. Phys. 2008. V. 103. № 10. P. 103301-103301-8.
 36. Ulrich A., Heindl T., Krücken R., Morozov A., Skrobol C., Wieser J. Electron beam induced light emission // Eur. Phys. J. Appl. Phys. 2009. V. 47. № 2. P. 22815-p1–22815-p4.
 37. http://www.coherent.com/Downloads/SD_EL2-03_tui-bavpho_k1_2.pdf.
 38. Kubodera S., Kitahara M., Kawanaka J., Sasaki W., Kurosawa K. A vacuum ultraviolet flash lamp with extremely broadened emission spectra // Appl. Phys. Lett. 1996. V. 69. № 4. 452–454.
 39. Kawanaka J., Shirai T., Kubodera S., Sasaki W. 1.5 kW high-peak-power vacuum ultraviolet flash lamp using a pulsed silent discharge of krypton gas // Appl. Phys. Lett. 2001. V. 79. № 23. P. 3752–3754.
 40. Carman R.J., Mildren R.P., Ward B.K., Kane D.M. High-pressure (>1 bar) dielectric barrier discharge lamps generating short pulses of high-peak power vacuum ultraviolet radiation // J. Phys. D: Appl. Phys. 2004. V. 37. № 17. P. 2399–2407.
 41. Tarasenko V., Erofeev M., Lomaev M., Rybka D., Panchenko A., Sosnin E., Skakun V., Schitz D. UV and VUV Excilamps with High Peak Power // J. Light Vis. Env. 2011. V. 35. № 3. P. 227–233.
 42. Baksht E.H., Burachenko A.G., Kostyrya I.D., Lomaev M.I., Rybka D.V., Shulepov M.A., Tarasenko V.F. Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application // J. Phys. D: Appl. Phys. 2009. V. 42. № 18. P. 185201.
 43. Carman R.J., Ward B.K., Kane D.M. Enhanced performance of an EUV light source (
λ = 84 nm) using shortpulse excitation of a windowless dielectric barrier discharge in neon // J. Phys. D: Appl. Phys. 2010. V. 43. № 2. P. 025205.
 44. Erofeev M.V., Tarasenko V.F. XeCl-, KrCl-, XeBr- and KrBr-excilamps of the barrier discharge with the nanosecond pulse duration of radiation // J. Phys. D: Appl. Phys. 2006. V. 39. № 16. P. 3609–3614.
 45. Avdeev S.M., Kostyrya I.D., Sosnin E.A., Tarasenko V.F. Generation of nanosecond pulses in a barrier-discharge in XeBr excimer lamp // Tech. Phys. 2006. V. 51. № 7. Р. 878–881.
 46. Bussiahn R., Pipa A.V., Kindel E. A Miniaturized XeCl Dielectric Barrier Discharge as a Source of Short Lived, Fast Decaying UV Radiation // Contrib. Plasma Phys. 2010. V. 50. № 2. P. 182–192.
 47. Pipa V., Bussiahn R. Optimization of a Dielectric Barrier Discharge for Pulsed UV Emission of XeCl at 308 nm // Contrib. Plasma Phys. 2011. V. 51. № 9. P. 850–862.
 48. Esrom H., Kogelschatz U. Metal deposition with a windowless VUV excimer source // Appl. Surf. Sci. 1992. V. 54. P. 440–444.
 49. Lenk M., Mehnert R. Design and characteristics of a windowless argon excimer source // Proc. RadTech Europe, Basle. 2001. P. 153–158.
 50. Elsner C., Lenk M., Prager L., Mehnert R. Windowless argon excimer source for surface modification // Appl. Surf. Sci. 2006. V. 252. № 10. P. 3616–3624.

 51. Lomaev M.I., Skakun V.S., Tarasenko V.F., Shitts D.V., Lisenko A.A. A windowless VUV excilamp// Tech. Phys. Lett. 2006. V. 32. № 7. P. 590–592.
 52. Sobottka A., Drössler L., Lenk M., Prager L., Buchmeiser R. An open Argon dielectric barrier discharge VUVsource // Plasma Process. Polym. 2010. V. 7. № 8. P. 650–656.
 53. Carman R.J., Mildren R.P. Computer modelling of a short-pulse excited dielectric barrier discharge xenon excimer lamp ( ~ 172 nm) // J. Phys. D: Appl. Phys. 2003. V. 36. № 1. P. 19–33.
 54. Bogdanov E., Kudryavtsev A.A., Arslanbekov R.R., KolobovV.I. Simulation of pulsed dielectric barrier discharge xenon excimer lamp // J. Phys. D: Appl. Phys. 2004. V. 37. № 21. P. 2987–2995.
 55. Bogdanov E.A., Kudryavtsev A.A., Arslanbekov R.R. 2D simulations of short-pulsed dielectric barrier discharge Xenon excimer lamp // Contrib. Plasma Phys. 2006. V. 46. № 10. P. 807–816.
 56. Lo D., Shangguan C., Kochetov I.V., Napartovich A.P. Experimental and numerical studies on Xe2*  VUV emission in fast electric discharge afterglow // J. Phys. D: Appl. Phys. 2005. V. 38. № 18. P. 3430–3437.
 57. Avtaeva S. V., Kulumbaev E.B. Effect of the Scheme of Plasmachemical Processes on the Calculated Characteristics of a Barrier Discharge in Xenon // Plasma Phys. Rep. 2008. V. 34. № 6. P. 452–470.
 58. Avtaeva S.V., Skornyakov A.V. Effect of nonlocal electron kinetics on the characteristics of a dielectric barrier discharge in xenon // Plasma Phys. Rep. 2009. V. 35. № 7. Р. 593–602.
 59. Avtaeva S.V., Skornyakov A.V. Calculation of the characteristics of xenon excilamps using a one-dimensional hydrodynamic model // Russ. Phys. J. 2010. V. 53. № 3. P. 257–262.
 60. Beleznai S., Mihajlik G., Agod A., Maros I., Juhasz R. High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations // J. Phys. D: Appl. Phys. 2006. V. 39. № 17. P. 3777–3787.
 61. Beleznai S., Mihajlik G., Maros I., Balazs L., Richter P. High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp // J. Phys. D: Appl. Phys. 2010. V. 43. № 3. P. 015203.
 62. Belasri A., Khodja K., Bendella S., Harrache Z. One-dimensional modelling of DBDs in Ne–Xe mixtures for excimer lamps // J. Phys. D: Appl. Phys. 2010. V. 43. № 44. P. 445202.
 63. Belasri A., Harrache Z. Electrical and kinetical aspects of homogeneous dielectric-barrier discharge in xenon for excimer lamps// Phys. Plasmas 2010. V. 17. № 12. P. 123501.
 64. Bendella S., Belasri A. Xe-Ne-HCl excimer lamp excited by a phototriggered discharge // Plasma Devices Oper. 2007. V. 15. № 2. P. 77–85.
 65. Belasri A., Bendella S., Baba-Hamed T. Study of the first pulse of Ne-Xe-HCl dielectric barrier discharge for the excimer lamp // Phys. Plasmas 2008. V. 15. № 5. P. 053502.
 66. Belasri A., Harrache Z. Electrical approach of homogenous high pressure Ne/Xe/HCl dielectric barrier discharge for XeCl (308 nm) lamp // Plasma Chem. Plasma Process. 2010. V. 31. № 5. P. 787–798.
 67. Avtaeva S.V., Saghi B., Rahmani B. One-dimensional fluid model and characteristics of the dielectric barrier discharge in 0.99Xe-0.01 Cl2 mixture // IEEE Trans. Plasma Sci. 2011. V. 39. № 9. P. 1814–1822.
 68. Guivan M., Guivan A. Characterization of a white-colour DBD-driven Cadmium Bromide exciplex lamp // Plasma Sources Sci. Technol. 2010. V. 19. № 5. P. 055014.
 69. Guivan M.M., Malinina A.A., Brablec A. Experimental and theoretical characterization of a multi-wavelength DBD-driven exciplex lamp operated with mercury bromide/rare gas mixtures // J. Phys. D: Appl. Phys. 2011. V. 44. № 22. P. 224012.
 70. Kurunczi P., Shah H, Becker K. Hydrogen Lyman-α and Lyman-β
emissions from high-pressure microhollow cathode discharges in Ne-H2 mixtures // J. Phys. B: At. Mol. Opt. Phys. 1999 V. 32. № 22. P. L651–L658.
 71. McCarthy T., Murnick D.E., Salvermoser M., Ulrich A. Non-thermal Doppler-broadened Lyman- line shape in resonant dissociation of H2 // J. Phys. B: At. Mol. Opt. Phys. 2005. V. 38. № 16. P. 3043–3054.
 72. Morozov A., Krücken R., Ulrich A., Wieser J., McCarthy T. Energy-transfer processes in neon-hydrogen mixtures excited by electron beams // J. Chem. Phys. 2005. V. 123. № 23. P. 234311.
 73. Karelin A.V., Yakovlenko S.I. Electron-beam pumping conversion into spontaneous emission at the LymanAlpha line (
λ = 121.6 nm) in Ne/H2 and He/H2 mixtures // Laser Phys. 2003. V. 13. № 12. P. 1455–1460.
 74. Karelin A.V. Far-UV sources pumped by an open discharge and electron beam // Laser Physics 2004. V. 14. № 1. P. 15–22.
 75. Yan J., Gupta M.C. High power 121.6 nm radiation source // J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures 2003. V. 21. № 6. P. 2839–2842.

 76. Liberman V., Rothshield M., Murphy P.G., Palmacci S.T. Prospects for photolithography at 121 nm // J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures 2002. V. 20. № 6. P. 2567–2573.
 77. Yan, J. High power 121.6 nm radiation source for advanced lithography // Ph D Thesis, 2005. Old Dominium University, Norfolk, Va. 146 pages; AAT 3191393.
 78. Moselhy M., Stark R.H., Schoenbach K.H., Kogelschatz U. Resonant energy transfer from argon dimers to atomic oxygen in microhollow cathode discharges // Appl. Phys. Lett. 2001. V. 78. № 7. P. 880–882.
 79. Volkova G.A., Gerasimov G.N. Amplification of
λ = 147 nm radiation from a barrier discharge in a mixture of krypton with xenon // Quant. Electron. 1997. V. 27. № 3. P. 213–216.
 80. Gerasimov G.N. Optical spectra of binary rare-gas mixtures // Phys. Uspekhi 2004. V. 47. № 2. P. 149–168.
 81. Gerasimov G.N., Krylov B.E., Hallin R., Arnesen A. Parameters of VUV radiation from a dc capillary discharge in a mixture of krypton and xenon // Opt. Specrosc. 2006. V. 100. № 6. P. 825–829.
 82. Krylov B., Mozorov A., Gerasimov G., Arnesen A., HallinR., Heijkenskjöld F. Channels of energy transfer to atomic nitrogen in excited argon-nitrogen mixtures // J. Phys. B: At. Mol. Opt. Phys. 2002. V. 35. № 20. P. 4257–4270.
 83. Morozov A., Krücken R., Ottenthal T., Ulrich A., Wieser J. Ultraviolet emission from argon water-vapor mixtures excited with low-energy electron beams // Appl. Phys. Lett. 2005. V. 86. № 1. P. 011502.
 84. http://www.uvsns.com.
 85. Kuhn H.J., Braslavsky S.E., Schmidt R. Chemical actinometry // Pure Appl. Chem. 2004. V. 76. № 12. Р. 2105–2146.
 86. Gonzalez M.G., Oliveros E., Wörner M., Braun A.M. Vacuum-ultraviolet photolysis of aqueous reaction systems // J. Photochem. Photobiol. C: Photochem. Rev. 2004. V. 5. № 3. P. 225–246.
 87. Salvermoser M.J., Kogelschatz U., Murnick D.E Influence of humidity on photochemical ozone generation with 172 nm xenon excimer lamps // Eur. Phys. J. Appl. Phys. 2009. V. 47. № 2. P. 22812.
 88. Falkenstein Z. Surface cleaning mechanisms utilizing VUV radiation in oxygen-containing gaseous environments // Proc. SPIE. 2001. V. 4440. P. 246–255.
 89. Kane D.M., Hirschausen D.B., Ward B.K., Carman R.J., Mildren R.P. Pulsed VUV sources and their application to surface cleaning of optical materials // Proc. SPIE. 2004. V. 5399. P. 100–106.
 90. Kane D.M., Hirschausen D., Ward B.K., Mildren R.P., Carman R.J. Surface Cleaning of Optical Materials Using Novel VUV Sources // Laser Cleaning II, Ed. Kane D.M. Singapore: World Scientific Publishing Co. 2006. Chapter 13. P. 243–256.
 91. Bloomstein T.M., Liberman V, Rothschild M., Hardy D.E., Efremow N.N. UV cleaning of contaminated 157-nm reticles // Proc. SPIE. 2001. V. 4346. P. 669–675.
 92. Oppenländer T. Excilamp Photochemistry // CRC Handbook of Organic Photochemistry and Photobiology, Ed. Griesbeck, A.G, Oelgemöller, M., Ghetti, F. Boca Raton: CRC Press, 2012. 3rd Edition. V. 1. 7th Ed., to be published in March 2012.
 93. Liaw I.I., Boyd I.W. The development and application of UV excimer lamps in nanofabrication// Functionalized Nanoscale Materials, Devices and Systems, Ed. Vaseashta, A., Mihailescu I.N. Springer 2008. P. 61–76.
 94. Schubert R., Scherzer T., Hinkefuss M., Marquardt B., Vogel J., Buchmeiser M.R. VUV-induced micro-folding of acrylate-based coatings: 1. Real-time methods for the determination of the micro-folding kinetics // Surf. Coat. Technol. 2009. V. 203. № 13. P. 1844–1849.
 95. Schubert R., Frost F., Hinkefuß M., Konieczny R., Marquardt B., Mehnert R., Buchmeiser M.R. VUV-induced micro-folding of acrylate-based coatings: 2. Characterization of surface properties // Surf. Coat. Technol. 2009. V. 203. № 24. P. 3734–3740.
 96. Bauer F., Flyunt R., Czihal K., Langguth H., Mehnert R., Schubert R., Buchmeiser M.R. UV curing and matting of acrylate coatings reinforced by nano-silica and microcorundum particles // Prog. Org. Coat. 2007. V. 60. № 2. P. 121–126.
 97. Prager L., Dierdorf A., Liebe H., Naumov S., Stojanović S., Heller R. , Wennrich L., Buchmeiser M.R. Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings // Chem. Eur. J. 2007. V. 13. № 30. P. 8522–8529.
 98. Prager L., Wennrich L., Heller R., Knolle W., Naumov S., Prager A., Decker D., Liebe H., Buchmeiser M.R. Vacuum-UV irradiation-based formation of Methyl-Si-O-Si networks from Poly(1,1-Dimethylsilazane-co-1- methylsilazane) // Chem. Eur. J. 2009. V. 15. № 3. P. 675–683.

99. Yu J.J., Boyd I.W. Low temperature Si and SiGe oxidation through dielectric barrier discharges // Thin Solid Films 2004. V. 453-454. P. 63–66.
100. Yu J.J., Boyd I.W. Direct nitridation of high-k metal oxide thin films using argon excimer sources // Electron. Lett. 2005. V. 41. № 22. P. 1210–1211.
101. Gumpenberger T., Heitz J., Bäuerle D., Kahr H., Graz I., Romanin C., Svorcik V., Leisch F. Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene // Biomaterials. 2003. V. 24. № 28. P. 5139–5144.
102. Olbrich M., Punshon G., Frischauf I., Salacinski H., Rebollar E., Romanin C., Seifalian A.M., Heitz J. UV surface modification of a new nanocomposite polymer to improve cyctocompatibility // J. Biomater. Sci. Polymer Edn. 2007: V. 18. № 4. Р. 453–468.
103. Elsner C., Naumov S., Zajadacz J., Buchmeiser M.R. 172 nm excimer VUV-triggered photodegradation and micropatterning of aminosilane films // Thin Solid Films 2009. V. 517. № 24. Р. 6772–6776.
104. Oppenländer T. Photochemical purification of water and air, Advanced oxidation processes (AOPs): Principles, reaction mechanisms, reactor concepts // Weinheim (Germany): Wiley-VCH, 2003.
105. Sosnin E.A., Sokolova I.V., Tarasenko V.F. Development and applications of novel UV and VUV excilamps in photochemistry // Photochemistry Research Progress, Ed. Sanchez, A. Gutierrez, S.J., Hauppauge, USA: Nova Science Publishers, Inc. 2008. P. 225–269.
106. Maisels A., Jordan F., Fissan H. On the effect of charge recombination on the aerosol charge distribution in photocharging systems // J. Aerosol Sci. 2003. V. 34. № 1. P. 117–132.
107. Jiang J., Hogan Jr. C.J., Chen D.-R., Biswas R. Aerosol charging and capture in the nanoparticle size range (6–15 nm) by direct photoionization and diffusion mechanisms // J. Appl. Phys. 2007. V. 102. № 3. P. 034904.
108. Intra P., Tippayawong N. An overview of unipolar charger developments for nanoparticle charging // Aerosol Air Qual. Res. 2011. V. 11. P. 187–209.
109. http://www.ecochem.biz/PAH/PAS2000.htm.
110. Vicente J.S., Gejo J.L., Rothenbacher S., Sarojiniamma S., Gogritchiani E., Wörner M., Kasper G., Braun A.M. Oxidation of polystyrene aerosols by VUV-photolysis and/or ozone // Photochem. Photobiol. Sci. 2009. V. 8. № 7. P. 944–952.
111. Zhang B., Liao Y.-C., Girshick S.L., Roberts J.T. Growth of coatings on nanoparticles by photoinduced chemical vapor deposition // J. Nanopart. Res. 2008. V. 10. № 1. P. 173–178.
112. Boies A.M, Roberts J.T., Girshick S.L., Zhang B., Nakamura T., Mochizuki A. SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition // Nanotechnology 2009. V. 20. № 29. P. 295604.
113. Mühlberger F., Wieser J., Ulrich A., Zimmermann R. Single photon ionization (SPI) via incoherent VUV-excimer light: Robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis // Anal. Chem. A 2002. V. 74. № 15. P. 3790–3801.
114. Mühlberger F., Wieser J., Morozov A., Ulrich A., Zimmermann R. Single-photon ionization quadrupole mass spectrometry with an electron beam pumped excimer light source // Anal Chem. 2005. V. 77. № 7. P. 2218–2226.
115. Eschner M.S., Zimmermann R. Determination of photoionization cross-sections of different organic molecules using gas chromatography coupled to single-photon ionization (SPI) time-of-flight mass spectrometry (TOF-MS) with an electron-beam-pumped rare gas excimer light source (EBEL): influence of molecular structure and analytical implications // Appl. Spectrosc. 2011. V. 65. № 7. P. 806–816.
116. Mühlberger F., Saraji-Bozorgzad M., Gonin M., Fuhrer K., Zimmermann R. Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source // Anal. Chem. 2007. V. 79. № 21. P. 8118–8124.
117. Campolmi P., Mavilia L., Lotti T.M., Rossi R., Brazzini B., Hercogova J., Cappugi G. 308 nm monochromatic excimer light for the treatment of palmoplantar psoriasis // Int. J. Immunopathol. Pharmacol. 2002. V. 13.  P. 11–13.
118. Köllner K., Wimmershoff M.B., Hintz .C, Landthaler M., Hohenleutner U. Comparison of the 308-nm excimer laser and a 308-nm excimer lamp with 311-nm narrowband ultraviolet B in the treatment of psoriasis // British J. Dermatol. 2005. V. 152. № 4. P. 750–754.
119. Dmitruck V.S., Sosnin E.A., Obgol’tz I.A. The first attempt of XeCl-excilamp application in complex psoriasis  curing // Proc. SPIE 2006. V. 6263. P. 316–321.

120. Mavilia L., Mori M., Rossi R., Campolmi P., Puglisi Guerra A., Lotti T. 308 nm monochromatic excimer light  in dermatology: personal experience and review of the literature // G. Ital. Dermatol Venereol. 2008. V. 143. № 5. P. 329–337.
121. Pacifico A., Leone G. Photo(chemo)therapy for vitiligo // Photodermatol. Photoimmunol. Photomed. 2011. V. 27. № 5. P. 261–277.
122. Tarasenko V.F., Sosnin E.A., Zhdanova O.S., Krasnozhenov E.P. Applications of excilamps in microbiological and medical investigations // Plasma for Bio-Decontamination, Medicine and Food Security, Ed. Machala Z., Hensel K., Akishev Yu., Springer. 2012. P. 251–263.