en/ en

ISSN: 1023-5086


ISSN: 1023-5086


Оптический журнал

Полнотекстовый перевод журнала на английский язык издаётся Optica Publishing Group под названием “Journal of Optical Technology“

Подача статьи Подать статью
Больше информации Назад

Periodic nanohole array structure induced on a silicon surface by direct writing with a femtosecond laser

Ссылка для цитирования:

D. Q. Yuan, M. Zhou, Q. R Wu, J. T. Xu, H. F. Yang Periodic nanohole array structure induced on a silicon surface by direct writing with a femtosecond laser [на англ. яз.] // Оптический журнал. 2015. Т. 82. № 6. С. 31–35.


D. Q. Yuan, M. Zhou, Q. R Wu, J. T. Xu, H. F. Yang Periodic nanohole array structure induced on a silicon surface by direct writing with a femtosecond laser [in English] // Opticheskii Zhurnal. 2015. V. 82. № 6. P. 31–35.

Ссылка на англоязычную версию:

D. Q. Yuan, Q. R. Wu, J. T. Xu, M. Zhou, and H. F. Yang, "Periodic nanohole array structure induced on a silicon surface by direct writing with a femtosecond laser," Journal of Optical Technology. 82(6), 353-356 (2015).


A regular micro-apparatus covered with periodic nanohole, nanoridge, and ripple structures on silicon bulk (with crystal orientation of 110) was formed by micromachining with a tightly focused beam of a femtosecond laser with a wavelength of 800 nm, a repetition rate of 1 kHz, and a pulse length of 130 fs in air. We used laser direct writing technology to form periodic double-row nanohole structures, and the laser was focused with a 10× focusing objective lens (NA=0.3). We investigated the relationship between the width of structures and the speed of processing to provide knowledge of the evolution of the nanohole and nanoridge structures.

Ключевые слова:

фемтосекундный лазер, матрицы с наноотверстиями, пульсации, прямая запись


Работа выполнена при финансовой поддержке Национального фонда естественных наук Китая (грант № 51405181), Молодежного фонда естественных наук провинции Цзянсу (грант № BK20130407), Национального фонда естественных наук колледжей и университетов провинции Цзянсу (грант № 13KJB460001), Научного фонда трибологии государственной ключевой лаборатории трибологии (грант № SKLTKF10B06).

Коды OCIS: 220.4610, 140.3290

Список источников:

1. Birnbaum M. Semiconductor Surface Damage Produced by Ruby Lasers // Appl. Phys. 1965. V. 36. P. 3688–3689.
2. Korte F., Koch J., Chichkov B.N. Formation of Microbumps and Nanojets on Gold Targets by Femtosecond Laser Pulses // Appl. Phys. A. 2004. V. 79. P. 879–881.
3. Pereira A., Cros A., Delaporte P., Georgiou S., Manousaki A., Marine W., Sentis M. Surface Nanostructuring of Metals by Laser Irradiation: Effects of Pulse Duration, Wavelength and Gas Atmosphere // Appl. Phys. A. 2004. V. 79. P. 1433–1437.
4. Nolte S.,Chichkov B.N.,Welling H.,Shani Y.,Liebermann K., Terkel H. Nanostructuring with Spatially Localized Femtosecond Laser Pulses // Opt. Lett. 1999. V. 24. P. 914–916.
5. Crouch C.H.,Carey J.E.,Warrender J.M., Aziz M.J., Mazur E., Génin F.Y. Comparison of Structure and Properties of Femtosecond and Nanosecond Laser-Structured Silicon // Appl. Phys. Lett. 2004. V. 84. P. 1850–1852.
6. Yuan D.Q., Zhou M., Cai L. Femtosecond Laser Micromachining of an Au/Cr Film Nanostack // Laser Physics. 2008. V. 18. № 9. P. 1092–1097.
7. Tan B., Venkatakrishnan K. A Femtosecond Laser-Induced Periodical Surface Structure on Crystalline Silicon // J. Micromech. Microeng. 2006. V. 16. P. 1080–1088.
8. Paivasaari K., Kaakkunen J., Kuittinen M., Jaaskelainen T. Enhanced Optical Absorptance of Metals Using Interferometric Femtosecond Ablation // Opt. Exp. 2007. V. P. 13838–13843.
9. Welsh G.H., Hunt N.T., Wynne K. Terahertz-Pulse Emission Through Laser Excitation of Surface Plasmons in a Metal Grating // Phys. Rev. Lett. 2007. V. 98. P. 026803-1–4.
10. Han W.Q., Wu L., Klie R.F., Zhu Y. Enhanced Optical Absorption Induced by Dense Nanocavities inside Titania Nanorods // Adv. Mater. 2007. V. 19. P. 2525–2529.
11. Gerbig Y.B., Ahmed S.I., Chetwynd D.G., Haefke H. Topography-Related Effects on the Lubrication of Nanostructured Hard Surfaces // Tribol. Int. 2006. V. 39. P. 945–952.
12. Harzic R.L., Schuck H., Sauer D., Anhut T., Riemann I.R., Konig K. Sub-100 nm Nanostructuring of Silicon by Ultrashort Laser Pulses // Opt. Exp. 2005. V. 13. № 17. P. 6651–6656.
13. Bonse J., Rosenfeil A., Krüger J. On the Role of Surface Plasmon Polarizations in the Formation of Laser-Induced Periodic Surface Structures upon Irradiation of Silicon by Femtosecond-Laser Pulse // Appl. Phys. 2009. V. 106. P. 104910.
14. Zhang C.Y., Yao J.W., Liu H.Y., Dai Q.F., Wu L.J., Lan S., Trofimov V.A., Lysak T.M. Colorizing Silicon Surface with Regular Nano-Hole Arrays Induced by Femtosecond Laser Pulses // Opt. Lett. 2012. V. 37. № 6. P. 1106–1108.
15. Zhou M., Yuan D.Q., Zhang W., Shen J., Li B.J., Song J., Cai L. Sub-Wavelength Ripple Formation on Silicon Induced by Femtosecond Laser Radiation // Chin. Phys. Lett. 2009. V. 26. № 3. P. 03790-1–4.
16. Dalili A., Tan B., Venkatakrishnan K. Silicon Wafer Surface Patterning Using Femtosecond Laser Irradiation below Ablation Threshold // Optics and Lasers in Engineering. 2010. V. 48. № 3. P. 346–353.
17. Rosenfeld A., Rohloff M., Höhm S., Krüger J., Bonse J. Formation of Laser-Induced Periodic Surface on Fused Silica upon Multiple Parallel Polarized Double-Femtosecond-Laser-Pulse // Applied Surface Science. 2012. V. 258. P. 9233–9236.
18. Yuan D.Q., Zhou M., Lu D.Q., Xu J.T. Evolution of Microstructures on Silicon Induced by Femtosecond Laser with Multiple Pulses // Optica Applicata. 2011. V. 3. P. 727–734.
19. Wang J.C., Guo C.L. Ultrafast Dynamics of Femtosecond Laser-Induced Periodic Surface Pattern Formation on Metals // Appl. Phys. Lett. 2005. V. 87. № 25. P. 251914.
20. Trice J., Thomas D., Favazza C., Sureshkumar R., Kalyanaraman R. Pulsed-Laser-Induced Dewetting in Nanoscopic Metal Films : Theory and Experiments // Phys. Rev. B. 2007. V. 75. P.235439.
21. Gedvilas M., Voisiat B., Račiukaitis G., Regelskis K. Self-Organization of Thin Metal Films by Irradiation with Nanosecond Laser Pulses // Applied Surface Science. 2009. V. 255. P. 9826–9829.