УДК: 535.36
Метаматериалы с отрицательным показателем преломления
Полный текст «Оптического журнала»
Полный текст на elibrary.ru
Публикация в Journal of Optical Technology
Жилин А.А., Шепилов М.П. Метаматериалы с отрицательным показателем преломления // Оптический журнал. 2008. Т. 75. № 4. С. 57–70.
Zhilin A.A., Shepilov M.P. Metamaterials with negative refractive index [in Russian] // Opticheskii Zhurnal. 2008. V. 75. № 4. P. 57–70.
A. A. Zhilin and M. P. Shepilov, "Metamaterials with negative refractive index," Journal of Optical Technology. 75 (4), 255-265 (2008). https://doi.org/10.1364/JOT.75.000255
Представлен обзор литературных данных по разработке и исследованию метаматериалов с отрицательным показателем преломления - искусственных материалов, состоящих из структурных элементов, вид и взаимное расположение которых можно задавать в процессе изготовления. Описаны интенсивные исследования, которые проводились в течение последних десяти лет и привели к созданию в 2003 г. метаматериалов, демонстрирующих отрицательный показатель преломления в гигагерцовой области частот. Отмечены новые тенденции, которые позволили получить метаматериалы с отрицательным показателем преломления в ближней инфракрасной области спектра.
Коды OCIS: 050.6624, 160.1245, 160.4670, 160.4760
Список источников:1. Born M., Wolf E. Principles of optics. N.Y.: Pergamon Press, 1964. 620 p. Перевод: Борн М., Вольф Э. Основы оптики. М.: Наука, 1973. 719 с.
2. Мандельштам Л.И. Лекции по некоторым проблемам теории колебаний (1944) (см. "Полное собрание трудов". Т. 5. С. 428-467. М.: АН СССР, 1950).
3. Веселаго В.Г. Электродинамика веществ с одновременно отрицательными значениями s и и // УФН. 1967. Т. 92. № 3. С. 517-526.
4. Lamb H. On group-velocity // Proc. Lond. Math. Soc. 1904. V. 1. P. 473–479.
5. Schuster A. An introduction to the theory of optics. London, U.K.: Edward Arnold, 1904. 352 p.
6. Мандельштам Л.И. Групповая скорость в кристаллической решетке // ЖЭТФ. 1945. Т. 15. № 9. С. 475-478.
7. Veselago V., Braginsky L., Shklover V., Hafner C. Negative refraction index materials // J. of Computational and Theoretical Nanoscience. 2006. V. 3. № 2. P. 1–30.
8. Tretyakov S.A. Research on negative refraction and backward-wave media: A historical perspective // Collection of papers of EPFL Latsis Symposium 2005 “Negative refraction: revisiting electromagnetics from microwaves to optics”. Lausanne, 28.2–2.03.2005. P. 30–35.
9. Ramakrishna S.A. Physics of negative refractive index materials // Reports on Progress in Physics. 2005. V. 68. № 2. P. 449–521.
10. Pendry J.B., Holden A.J., Stewart W.J., Youngs I. Extremely low frequency plasmons in metallic mesostructures // Phys. Rev. Lett. 1996. V. 76. № 25. P. 4773–4776.
11. Pendry J.B., Holden A.J., Robbins D.J., Stewart W.J. Magnetism from conductors and enhanced nonlinear phenomena // IEEE Trans. Microwave Theory Tech. 1999. V. 47. № 11. P. 2075–2084.
12. Smith D.R., Padilla W.J., Vier D.C., Nemat-Nasser S.C., Schultz S. Composite medium with simultaneously negative permeability and permittivity // Phys. Rev. Lett. 2000. V. 84. № 18. P. 4184–4187.
13. Shelby R.A., Smith D.R., Schultz S. Experimental verification of a negative index of refraction // Science. 2001. V. 292. № 5514. P. 77–79.
14. Kotthaus J.P., Jaccarino V. Antiferromagnetic-resonance linewidths in MnF2 // Phys. Rev. Lett. 1972. V. 28. № 25. P. 1649–1652.
15. Grunberg P., Metawe F. Light scattering from bulk and surface spin waves in EuO // Phys. Rev. Lett. 1977. V. 39. № 24. P. 1561–1565.
16. Camley R.E., Mills D.L. Surface polaritons on uniaxial antiferromagnets // Phys. Rev. B. 1982. V. 26. № 3. P. 1280–1287.
17. Remer L., Luthi B., Sauer H., Geick R., Camley R.E. Nonreciprocal optical reflection of the uniaxial antiferromagnet MnF2 // Phys. Rev. Lett. 1986. V. 56. № 25. P. 2752–2754.
18. Dumelow T., Camley R.E., Abraha K., Tilley D.R. Nonreciprocal phase behavior in reflection of electromagnetic waves from magnetic materials // Phys. Rev. B. 1998. V. 58. № 2. P. 897–908.
19. Pendry J.B., O’Brien S. Very-low-frequency plasma // J. Phys.: Condens. Matter. 2002. V. 14. № 32. P. 7409–7416.
20. O’Brien S., MacPeake D., Ramakrishna S.A., Pendry J.B. Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials // Phys. Rev. B. 2004. V. 69. № 24. 241101 (4) (R).
21. Pendry J.B., Holden A.J., Robbins D.J., Steward W.J. Low frequency plasmons in thin-wire structures // J. Phys.: Condens. Matter. 1998. V. 10. № 22. P. 4785–4809.
22. Raether H. Excitation of plasmons and interband transitions by electrons. Berlin: Springer, 1980. 109 p.
23. Raether H. Sufrace Plasmons on smooth and rough surfaces and on gratings. Berlin: Springer, 1988. 135 p.
24. Parazzoli C.G., Greegor R.B., Li K., Kontenbah B.E.C., Tanielian M.H. Experimental verification and simulation of negative index of refraction using Snell’s law // Phys. Rev. Lett. 2003. V. 90. № 10. 107401 (4).
25. Li K., McLean S.J., Greegor R.B., Parazzoli C.G., Tanielian M.H. Free-space focused-beam characterization of left-handed materials // Appl. Phys. Lett. 2003. V. 82. № 15. P. 2535–2537.
26. Yen T.J., PadillaW.J., Fang N., Vier D.C., Smith D.R., Pendry J.B., Basov D.N., Zhang X. Terahertz magnetic response from artificial materials // Science. 2004. V. 303. № 5663. P. 1494–1496.
27. Gay-Balmaz P., Martin O.J.F. Electromagnetic resonances in individual and coupled split-ring resonators // J. Appl. Phys. 2002. V. 92. № 5. P. 2929–2936.
28. Hsu A.-C., Cheng Y.K., Chen K.H., Chern J.L., Wu S.C., Chen C.F., Chang H., Lien Y.H., Shy J.T. Far-infrared resonance in split ring resonators // Japan. J. Appl. Phys. 2004. V. 43. № 2A. P. L176–L179.
29. Pendry J.B. Negative refraction makes a perfect lens // Phys. Rev. Lett. 2000. V. 85. № 18. P. 3966–3969.
30. Блиох К.Ю., Блиох Ю.К. Что такое левые среды и чем они интересны? // УФН. 2004. Т. 174. № 4. С. 439-447.
31. Valanju P.M., Walser R.M., Valanju A.P. Wave refraction in negative-index media: always positive and very inhomogeneous // Phys. Rev. Lett. 2002. V. 88. № 18. 187401 (4).
32. Garcia N., Nieto-Vesperinas M. Left-handed materials do not make a perfect lens // Phys. Rev. Lett. 2002. V. 88. № 20. 207403 (4).
33. Hooft G.W. Comment on “Negative Refraction Makes a Perfect Lens” // Phys. Rev. Lett. 2001. V. 87. № 24. 249701 (1).
34. Pendry J.B., Smith D.R. Comment on “Wave refraction in negative-index media: always positive and very inhomogeneous” // Phys. Rev. Lett. 2003. V. 90. № 2. 029703 (1).
35. Pacheco J. (Jr.), Grzegorczyk T.M., Wu B.-I., Zhang Y., Kong J.A. Power propagation in homogeneous isotropic frequency-dispersive left-handed media // Phys. Rev. Lett. 2002. V. 89. № 25. 257401 (4).
36. Foteinopoulou S.,Economou E.N., Soukoulis C.M. Refraction in media with a negative refraction index // Phys. Rev. Lett. 2003. V. 90. № 10. 107402 (4).
37. Loschiapo P.F., Smith D.L., Forester D.W., Rachford F.J. Schelleng J. Electromagnetic waves focused by a negativeindex planar lens // Phys. Rev. E. 2003. V. 67. № 2. 025602 (4) (R).
38. Shen J.T., Platzman P.M. Near field imaging with negative dielectric constant lenses // Appl. Phys. Lett. 2002. V. 80. № 18. P. 3286–3288.
39. Smith D.R., Schurig D., Rosenbluth M., Schultz S., Ramakrishna S.A., Pendry J.B. Limitations on subdiffraction imaging with a negative refractive index slab // Appl. Phys. Lett. 2003. V. 82. № 10. P. 1506–1508.
40. Kolinko P., Smith D. Numerical study of electromagnetic waves interacting with negative index materials // Opt. Express. 2003. V. 11. № 7. P. 640–648.
41. Cummer S.A. Simulated causal subwavelength focusing by a negative refractive index slab // Appl. Phys. Lett. 2003. V. 82. № 10. P. 1503–1505.
42. Rao X.S., Ong C.K. Subwavelength imaging by a lefthanded material superlens // Phys. Rev. E. 2003. V. 68. № 6. 067601 (3).
43. Huang X., Zhou L. Modulating image oscillations in focusing by a metamaterial lens: Time-dependent Green’s function approach // Phys. Rev. B. 2006. V. 74. № 4. 045123 (8).
44. Cubukcu E., Aydin K., Ozbay E., Foteinopolou S., Soukoulis C.M. Subwavelength resolution in a twodimensional photonic-crystal-based superlens // Phys. Rev. Lett. 2003. V. 91. № 20. 207401 (4).
45. Grbic A., Eleftheriades G.V. Overcoming the diffraction limit with a planar left-handed transmission-line lens // Phys. Rev. Lett. 2004. V. 92. № 11. 117403 (4).
46. Alu A., Engheta N. Achiving transparency with plasmonic and metamaterials coatings // Phys. Rev. E. 2005. V. 72. № 1. 016623 (9).
47. Zhou X., Hu G. Design for electromagnetic wave transparency with metamaterials // Phys. Rev. E. 2006. V. 74. № 2. 026607 (8).
48. Garcia de Abajo F.J., Gî′mez-Santos G., Blanco L.A., Borisov A.G., Shabanov S.V. Tunneling mechanism of light transmission through metallic films // Phys. Rev. Lett. 2005. V. 95. № 6. 067403 (4).
49. Milton G.V., Nicoroviki N.-A. P. On the cloaking effects associated with anomalous localized resonance // Proc. Roy. Soc. A. 2006. V. 462. № 2074. P. 3027–3059.
50. Pendry J.B., Schurig D., Smith D.R. Controlling electromagnetic fields // Science. 2006. V. 312. № 5781. P. 1780–1782.
51. Leonhardt U. Optical conformal mapping // Science. 2006. V. 312. № 5781. P. 1777–1780.
52. Cummer S.A., Popa B.-I., Schurig D., Smith D.R., Pendry J.B. Full-wave simulation of electromagnetic cloaking structures // Phys. Rev. E. 2006. V. 74. № 3. 036621 (5).
53. Leonhardt U. Notes on conformal invisibility devices // New J. Phys. 2006. V. 8. 118 (16).
54. Cai W., Chettiar U.K., Kildishev A.V., Shalaev V.M. Optical cloaking with metamaterials // Nature Photonics. 2007. V. 1. № 4. P. 224–227.
55. Notomi M. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap // Phys. Rev. B. 2000. V. 62. № 16. P. 10696–10705.
56. Smith D.R., Pendry J.B., Wiltshire M.C.K. Metamaterials and negative refractive index // Science. 2004. V. 305. № 5685. P. 788–792.
57. Soukoulis C.M. Bending back light: The science of negative index materials // OPN. 2006. V. 17. № 6. P. 18–21. Перевод: Отклонение света назад. Наука о материалах с отрицательным показателем преломления // Оптический журнал. 2007. Т. 74. № 4. (Приложение. С. 16-21.).
58. Wang X., Ren Z., Kempa K. Unrestricted superlensing in a triangular two dimensional photonic crystal // Optics Express. 2004. V. 12. № 13. P. 2919–2924.
59. Lu Z., Murakowski J.A., Schuetz C.A., Shi S., Schneider G.J., Prather D.W. Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies // Phys. Rev. Lett. 2005. V. 95. № 15. 153901 (4).
60. Klar T.A., Kildishev A.V., Drachev V.P., Shalaev V.M. Negative-index metamaterials: going optical // IEEE Journal of Selected Topics in Quantum Electronics. 2006. V. 12. № 6. P. 1106–1115.
61. Yen T.J., Padilla W.J., Fang N., Vier D.C., Smith D.R., Pendry J.B., Basov D.N., Zhang X. Terahertz magnetic response from artificial materials // Science. 2004. V. 303. № 5663. P. 1494–1496.
62. Moser H.O., Casse B.D.F., Wilhelmi O., Saw B.T. Terahertz response of a microfabricated rod-split-ring resonator electromagnetic metamaterial // Phys. Rev. Lett. 2005. V. 94. № 6. 063901 (4).
63. Zhang S., Fan W., Minhas B.K., Frauenglass A., Malloy K.J., Brueck S.R.J. Midinfrared resonant magnetic nanostructures exhibiting a negative permeability // Phys. Rev. Lett. 2005. V. 94. № 3. 037402 (4).
64. Panina L.V., Grigorenko A.N., Makhnovskiy D.P. Optomagnetic composite medium with conducting nanoelements // Phys. Rev. B. 2002. V. 66. № 15. 155411 (17).
65. Linden S., Enkrich C., Wegener M., Zhou J., Koschny T., Soukoulis C.M. Magnetic response of metamaterials at 100 terahertz // Science. 2004. V. 306. № 5700. P. 1351–1353.
66. Enkrich C., Wegener M., Perez-Williard F., Linden S., Zhou J., Koschny T., Soukoulis C.M. Optimizing the design parameters for split-ring-resonators at telecommunication wavelength // Proc. Int. Conf. Quantum Electron. Laser Sci, Baltimore, May 2005. P. 1535–1536.
67. Enkrich C., Wegener M., Linden S., Burger S., Zschiedrich L., Schmidt F., Zhou J.F., Koschny T., Soukoulis C.M. Magnetic metamaterials at telecommunication and visible frequencies // Phys. Rev. Lett. 2005. V. 95. № 20. 203901 (4).
68. Lagarkov A.N., Sarychev A.K. Electromagnetic properties of composites containing elongated conducting inclusions // Phys. Rev. B. 1996. V. 53. № 10. P. 6318–6336.
69. Podolskiy V.A., Sarychev A.K., Shalaev V.M. Plasmon modes in metal nanowires and left-handed materials // J. Nonlinear Opt. Phys. Mater. 2002. V. 11. № 1. P. 65–74.
70. Podolskiy V.A., Sarychev A.K., Shalaev V.M. Plasmon modes in metal nanowires and left-handed materials // Opt. Express. 2003. V. 11. № 7. P. 735–745.
71. Podolskiy V.A., Sarychev A.K., Narimanov E.E., Shalaev V.M. Resonant light interaction with plasmonic nanowire systems // J. Opt. A: Pure and Appl. Opt. 2005. V. 7. P. S32–S37.
72. Engheta N., Salandrino A., Alu A. Circuit elements at optical frequencies: Nanoinductors, nonocapacitors, and nanoresistors // Phys. Rev. Lett. 2005. V. 95. № 9. 095504 (4).
73. Shalaev V.M., Cai W., Chettiar U.K., Yuan H.K., Sarychev A.K., Drachev V.P., Kildishev A.V. Negative index of refraction in optical metamaterials // Opt. Lett. 2005. V. 30. № 24. P. 3356–3358.
74. Drachev V.P., Cai W., Chettiar U.K., Yuan H.K., Sarychev A.K., Kildishev A.V., Klimec G., Shalaev V.M. Experimental verification of an optical negative-index material // Laser Phys. Lett. 2006. V. 3. № 1. P. 49–55.
75. Kildishev A.V., Cai W., Chettiar U.K., Yuan H.K., Sarychev A.K., Drachev V.P., Shalaev V.M. Negative refractionindex in optics of metal-dielectric composites // J. Opt. Soc. Amer. B. 2006. V. 23. № 24. P. 423–433.
76. Falcone F., Lopetegi T., Laso M.A.G., Baena J.D., Bonache J., Beruete M., Marques R., Martin F., Sorolla M. Babinet principle applied to the design of metasurfaces and metamaterials // Phys. Rev. Lett. 2004. V. 93. № 19. 197401 (4).
77. Zhang S., Fan W., Panoiu N.C., Malloy K.J., Osgood R.M., Brueck S.R.J. Experimental demonstration of near-infrared negative-index materials // Phys. Rev. Lett. 2005. V. 95. № 13. 137404 (4).
en