DOI: 10.17586/1023-5086-2024-91-12-46-53
УДК: 543.421/.424
Спектральные характеристики органического красителя нейтральный красный в водно-глицериновых растворах и плёнках поливинилового спирта
Плешаков И.В., Склярова А.С., Проскурина О.В., Нечитайлов А.А., Глебова Н.В. Спектральные характеристики органического красителя нейтральный красный в водно-глицериновых растворах и плёнках поливинилового спирта // Оптический журнал. 2024. Т. 91. № 12. С. 46–53. http://doi.org/10.17586/1023-5086-2024-91-12-46-53
Pleashakov I.V., Sklyarova A.S., Proskurina O.V., Nechitailov A.A., Glebova N.V. Spectral characteristics of organic dye neutral red in aqueous-glycerol solutions and films of polyvinyl alcohol [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 12. P. 46–53. http://doi. org/10.17586/1023-5086-2024-91-12-46-53
Предметом исследования являлись оптические свойства водных и водно-глицериновых растворов органического красителя нейтральный красный, а также плёнок на основе поливинилового спирта, в которые данный краситель внедрялся из растворов. Цель работы заключалась в установлении спектральных характеристик органического красителя нейтральный красный в водно-глицериновых растворах и плёнках поливинилового спирта в ультрафиолетовом, видимом и ближнем инфракрасном диапазонах, а также их особенностей, связанных с влиянием указанной полимерной матрицы. Метод. Растворы, полученные смешиванием в нужной пропорции глицерина, воды и красителя, а также плёнки, изготовленные высушиванием на стеклянной подложке водно-глицериновых смесей с добавлением красителя, исследовались на спектрофотометре с получением абсорбционных спектров в диапазоне длин волн от 190 до 1100 нм. Основные результаты. Показано, что характерные полосы красителя подвержены сильному влиянию матрицы, в то время как наличие глицерина изменяет их очень незначительно. В растворах обнаружен большой сдвиг инфракрасного пика поглощения воды под действием глицерина. Практическая значимость. Изучение характеристик плёночных материалов на основе поливинилового спирта с окрашивающими добавками, в том числе, пластифицированных глицерином, представляет интерес с точки зрения их возможного использования при производстве фильтров, гибких поляризаторов и других элементов прикладной оптики.
оптическая спектроскопия, нейтральный красный, поливиниловый спирт, растворы, плёнки
Коды OCIS: 160.4670
Список источников:1. Filippovich L.N., Ariko N.G. & Agabekov V.E. Optical anisotropy and photostability of polarizing films dyed with Brilliant Yellow // J. Appl. Spectrosc. 2009. V. 76. P. 440–446. https://doi.org/10.1007/s10812-009-9182-2
2. Каманина Н.В., Лихоманова С.В., Васильев П.Я., Студёнов В.И., Чернозатонский Л.А., Ваганов В.Е., Мишаков И.В. Изменение поверхностных свойств тонкопленочных поляризаторов с углеродными наноструктурами // Письма в ЖТФ. 2011. Т. 37. Вып. 24. С. 49–56.
Kamanina N.V., Likhomanova S.V., Vasilyev P.Ya., Studeonov V.I., Chernozatonskii L.A., Vaganov V.E., Mishakov I.V. Surface properties of thin film polarizers modified by carbon nanostructures // Tech. Phys. Lett. 2011. V. 37. P. 1165–1167. https://doi.org/10.1134/ S1063785011120236
3. Козенков В.М., Беляев В.В., Чаусов Д.Н. Тонкопленочные поляризаторы: свойства, технологии, основные типы // Жидк. крист. и их практич. использ. 2021. V. 21 (2). P. 5–23. https://doi.org/10.18083/LCAppl. 2021.2.5
Kozenkov V.M., Belyaev V.V., Chausov D.N. Thin film polarizers: Properties, technologies and main types // Liq. Cryst. and their Appl. 2021. V. 21(2). P. 5–23. https://doi.org/10.18083/LCAppl.2021.2.5
4. Khozemy Ehab E., El-Kelany M.A., Heba Goda, Boshra Awad. Comparative study of two mixture dyes based on PVA for industrial use as gamma radiation dosimeter // J. Radioanal Nucl. Chem. 2023. V. 332. P. 2249–2256. https://doi.org/10.1007/s10967-023-08854-z
5. Филиппович Л.Н., Игнатович Ж.В., Новик Х.А., Шумская Е.Е., Шахаб С.Н., Рогачев А.А., Подобед Л.Ф., Лобанова Е.П. Композитные пленки на основе поливинилового спирта с добавками полианилина и наночастиц магнетита, золота и серебра // Труды 15-й междунар. конф. «Пленки и покрытия-2021». СанктПетербург, Россия. 18–20 мая 2021. С. 136–139.
Filippovich L.N., Ignatovich Zh.V., Novik Kh.A., Shumskaya E.E., Shahab S.N., Rogachev A.A., Podobed L.F., Lobanova E.P. Composite films based on polyvinyl alcohol with the addition of polyaniline and magnetite, gold and silver nanoparticles [in Russian] // XV Intern. Conf. Films and coatings – 2021 (Proceedings). Saint-Petersburg, Russia. May 18–20, 2021. P. 136–139.
6. Sapalidis A.A. Porous polyvinyl alcohol membranes: Preparation methods and applications // Symmetry. 2020. V. 12. № 960. P. 1–22. https://doi.org/10.3390/ sym12060960
7. Филиппович Л.Н., Шахаб С.Н., Дикусар Е.А. Спектрально-поляризационные и теплофизические свойства поливинилспиртовых пленок, окрашенных новыми производными конго красного // SCIARTICLE.RU. 2015. № 27. P. 231–241.
Filippovich L.N., Shahab S.N., Dikusar E.A. Spectral polarization and thermophysical properties of polyvinyl alcohol films painted with new derivatives of Congo red [in Russian] // SCI-ARTICLE.RU. 2015. № 27. P. 231–241.
8. Fadil F., Adli F.A., Affandi N.D.N., Harun A.M., Alam M.K. Dope-dyeing of polyvinyl alcohol (PVA) nanofibres with remazol yellow FG // Polymers. 2020. V. 12. P. 3043. https://doi.org/10.3390/polym12123043
9. Степко А.С., Медведева А.А., Кошкин А.В., ЛебедевСтепанов П.В. Избирательная сольватация красителя 4-DASPI в бинарном растворителе вода–этиленгликоль // Оптика и спектроскопия. 2021. Т. 129. Вып. 12. С. 1502–1509. https://doi.org/10.21883/ OS.2021.12.51737.2467-21
Stepko A.S., Medvedeva A.A., Koshkin A.V., LebedevStepanov P.V. Specific solvation of a 4-DASPI dye in a water–ethylene glycol binary solvent // Opt. Spectrosc. 2022. V. 130. P. 108–115. https://doi.org/10.1134/ S0030400X22010179
10. Rauf M.A., Soliman A.A., Khattab M. Solvent effect on the spectral properties of Neutral Red // Chemistry Central Journal. 2008. V. 2:19. https://doi.org/10.1186/ 1752-153X-2-19
11. Райхардт К. Растворители и эффекты среды в органической химии / Пер. с англ. Кирюшкина А.А. Под ред. Петросяна В.С. М.: Мир, 1991. 763 с.
Reichardt Ch. Solvents and solvent effects in organic chemistry. Weinheim: Wiley-VCH, 1988. 534 p.
12. Reichardt Ch. Solvatochromic dyes as solvent polarity indicators // Chem. Rev. 1994. V. 94. № 8. P. 2319–2358. https://doi.org/10.1021/cr00032a005
13. Herodes K., Leito I., Koppel I., Rosés M. Solute–solvent and solvent–solvent interactions in binary solvent mixtures. Part 8. The ET(30) polarity of binary mixtures of formamides with hydroxylic solvents // J. Phys. Org. Chem. 1999. V. 12. P. 109–115. https://doi.org/10.1002/(SICI)1099-1395(199902)12:2<109::AIDPOC97>3.0.CO;2-L
14. Penkova A.V, Acquah S., Sokolova M.P., Dmitrenko M.E., Toikka A.M. Polyvinyl alcohol membranes modified by low-hydroxylated fullerenol C-60(OH)12 // J. Memb. Sci. 2015. V. 491. P. 22–27. https://doi.org/ 10.1016/j.memsci.2015.05.011
15. Penkova A.V., Acquah S., Dmitrenko M.E., Sokolova M.P., Mikhailova M.E., Polyakov E.S., Ermakov S.S., Markelov D.A., Roizard D. Improvement of pervaporation PVA membranes by the controlled incorporation of fullerenol nanoparticles // Mater. Des. 2016. V. 96. P. 416–423. https://doi.org/10.1016/j.matdes.2016.02.046
16. Cortés-Morales E.C., Rathee V.S., Ghobadi A., Whitmer J.K. A molecular view of plasticization of polyvinyl alcohol // J. Chem. Phys. 2021. V. 155. P. 174903. https://doi.org/10.1063/5.0065964
17. Pleshakov I.V., Proskurina O.V., Gerasimov V.I., Kuz’min Yu.I. Optical anisotropy in fullerene-containing polymer composites induced by magnetic field // Nanosystems: Phys. Chem. Math. 2022. V. 13. P. 503–508. https://doi.org/10.17586/2220-8054-2022-13-5-503-508
18. Южаков В.И. Агрегация молекул красителей и ее влияние на спектрально-люминесцентные свойства растворов // Успехи химии. 1992. Т. 61. Вып. 6. С. 1114–1141.
Yuzhakov V.I. Aggregation of dye molecules and its influence on the spectral luminescent properties of solutions // Russ. Chem. Rev. 1992. V. 61 P. 613–628. https://doi.org/10.1070/RC1992v061n06ABEH000988
19. Карякин В., Кривенцова Г.А. Состояние воды в органических и неорганических соединениях по инфракрасным спектрам поглощения: монография / Под ред. М.М. Сенявина. М: Наука, 1973. 176 с.
Karyakin V., Kriventsova G.A. State of water in organic and inorganic compounds according to infrared absorption spectra: monograph [in Russian] / Ed. M.M. Senyavina. M: Nauka, 1973. 176 p.
20. Kataoka Y., Kitadai N., Hisatomi O., Nakashima S. Nature of hydrogen bonding of water molecules in aqueou solutions of glycerol by attenuated total reflection (ATR) infrared spectroscopy // Appl. Spectrosc. 2011. V. 65. № 4. P. 436–441. https://doi.org/10.1366/10-06183
21. Tamiji Z., Yazdanipour A., Niazi A. Spectrophotometric and thermodynamic study on the dimerization equilibrium of neutral red in the water and micelle environments by chemometrics methods // Int. J. Exp. Spectroscopic Tech. 2018. V. 3. P. 1–6. https://doi.org/10.35840/2631-505X/8515
22. Thomas D., Cebe P. Self-nucleation and crystallization of polyvinyl alcohol // J. Therm. Anal. Calorim. 2017. V. 127. P. 885–894. https://doi.org/10.1007/s10973-016-5811-1
23. Просанов И.Ю., Уваров Н.Ф. Электрические свойства дегидратированного поливинилового спирта // ФТТ. 2012. Т. 54. Вып. 2. С. 393–396.
Prosanov I.Y., Uvarov N.F. Electrical properties of dehydrated polyvinyl alcohol // Phys. Solid State. 2012. V. 54. P. 421–424. https://doi.org/10.1134/S1063783412020278
24. Groda Y.G., Vikhrenko V.S., Poghosyan A.H., Hakobyan P.K., Arsenyan L.H., Shahinyan A.A. Conformation and diffusion properties of polyvinyl alcohol and polyvinylpyrrolidone molecules // Electronic Journal of Natural Sciences. 2015. № 1 (24). P. 60–67. http://doi.org/10.1016/j.colsurfa.2015.03.053
25. Хасбиуллин Р.Р., Костина Ю.В., Петрова Т.Ф., Бондаренко Г.Н., Чалых А.Е., Чуваев В.Ф., Герасимов В.К. Остаточная вода в поливиниловом спирте // Высокомолек. соед. А. 2014. Т. 56. № 5. С. 491–500. https://doi.org/10.7868/S2308112014050095
Khasbiullin R.R., Kostina Y.V., Petrova T.F. et al. Residual water in polyvinyl alcohol // Polym. Sci. Ser. A. 2014. V. 56. P. 569–578. https://doi.org/10.1134/ S0965545X14050095