ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 681.7.068

Gain Flattening of DWDM Channels for the Entire C & L Bands. Выравнивание усиления в каналах DWDM в полных полосах С и L

For Russian citation (Opticheskii Zhurnal):

Bilal S.M., Zafrullah M., Islam M.K. Выравнивание усиления в каналах DWDM в полных полосах С и L // Оптический журнал. 2012. Т. 79. № 9. С. 40–45.

    

Bilal S.M., Zafrullah M., Islam M.K. Gain Flattening of DWDM Channels for the Entire C & L Bands [in English] // Opticheskii Zhurnal. 2012. V. 79. № 9. P. 40–45.

For citation (Journal of Optical Technology):

S. M. Bilal, M. Zafrullah, and M. K. Islam, "Gain flattening of DWDM channels for the entire C & L bands," Journal of Optical Technology. 79(9), 557-560 (2012).  https://doi.org/10.1364/JOT.79.000557

Abstract:

A hybrid amplifier consisting of one stage of Erbium Doped Fiber Amplifier and two stages of Raman amplifiers is constructed. Two Raman fibers are cascaded in series to suppress the intensity noise due to double Rayleigh scattering. Backward pumping is applied at all stages in order to increase the gain of Erbium Doped Fiber Amplifier and to decrease the polarization dependent gain of Raman fiber amplifier. In our previous  experiment a 16 channel Wavelength Division Multiplexed system with channel spacing  of 5 nanometers was considered. In this experiment a Density Wavelength Division Multiplexed system having 80 channels and a channel spacing of 0.8 nm was taken in to account. Gain Flattening is achieved for the entire C-band and L-bands. Experimental results showed that the hybrid amplifier has the average Gain of more than 19 dB in the wavelength range between 1530–1600 nanometers, with the Noise Figure of less than 6 decibels. The Gain of the Erbium Doped Fiber Amplifier and Raman was optimized to minimize the ripple value as low as 0.045 decibels with an output power of 15.265 decibelmilli.

Keywords:

Raman fiber amplifier, hybrid amplifier, Erbium Doped Fiber Amplifier, Noise Figure, Wavelength Division multiplexing, Density Wavelength Division multiplexing, Gain Flattening Filter

OCIS codes: 060.0060, 060.2320

References:

1. Masuda H., Kawai S. Wide band and Gain-flattened hybrid fiber amplifier consisting of an EDFA and multiwavelength pumped RAMAN amplifier / / IEEE Photonics Technology Letters. 1999. V. 11. № 6. P. 647–649.
2. Yamada M., Mori A., Kobayashi K., Ono H., Kanamori T., Nishida Y., Ohishi Y. Low noise and gain-flattened Er3+-doped tellurite fiber amplifier // Tech. Dig. Optical Amplifiers and Their Applications OAA. 1998. P. 103–106, paper TuC2.
3. Wysocki P.F., Juskins J.B., Espindola R.P., Andrejco M., Vengasarkar A.M. Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter // IEEE Photonics Technology Letters. 1997. V. 9. № 10. P. 1343–1345.
4. Sun Y., Sulhoff J.W., Srivastava A.K., Abramov A., Strasser T.A., Wysocki P.F., Pedrazzani J.R., Judkins J.B., Espindola R.P., Wolf C., Zyskind J.L., Vengsarkar A.M., Zhou J. A gain-flattened ultra wide band EDFA for high capacity WDM optical communications systems // Tech. Dig. European Conference on Optical Communication. ECOC 1. 1998. P. 53–54.
5. Kawai S., Masuda H., Suzuki K.-I., Aida K. Ultrawide, 75-nm 3-dB gain-band optical amplifier utilizing gainflattened erbium-doped fluoride fiber amplifier and discrete Raman amplification // Electronics Letters. 1998. V. 34. № 9. P. 897–898.
6. Kawai S., Masuda H., Suzuki K.-I., Aida K. Wide-Bandwidth and Long-Distance WDM Transmission Using Highly Gain-Flattened Hybrid Amplifier // IEEE Photonics Technology Letters. 1999. V. 11. № 7. P. 886–888.
7. Sakamoto T., Aozasa S-I., Yamada M., Shimizu M. Hybrid amplifiers consisting of EDFA and TDFA for WDM signals // Journal of Lightwave Technology. 2006. V. 24. № 6. P. 2287.
8. Karasek M., Menif M., Bellemare A. Design of Wideband Hybrid Amplifiers for Local Area Networks // IEE Proc. Optoelectronic. 2001. V. 148. № 3. P. 150–155.
9. Martini M.M.J., Castellani C.E.S., Pontes M.J., Ribeiro M.R.N., Kalinowski H.J Gain Profile Optimization for Raman+EDFA Hybrid Amplifiers with Recycled Pumps for WDM Systems // Journal of Microwaves, Optoelectronics and Electromagnetic Applications. 2010. V. 9. № 2. P. 100–112.
10. Castellani C.E.S., Cani S.P.N., Segatto M.E.V., Pontes M.J., Romero M.A. Design methodology for multi-pumped discrete RAMAN amplifiers:case study employing photonic crystal fibers // Optic Express. 2009. V. 17. № 16. P. 14121–14131.
11. Bilal S.M., Zafrullah M., Islam M.K. Achieving Gain Flattening With Enhanced Bandwidth for Long Haul WDM Systems // Journal of Optical Technology (JOT). 2012. V. 79. № 2.
12. Liaw S.-K., Ho K.-P., Huang C.-K., Chen W.-T., Hsiao Y.-L. Investigate C+L band EDFA/Raman amplifiers by using the same pump lasers // 6th International Joint Conference on Information and Computing (JCIS2006). JCIS2006 Kaohsoung Taiwan. paper PNC-11.
13. SunY., Srivastava A.K., Zhou J., Sulhoff J.W. Optical fiber amplifiers for WDM optical networks // Bell Labs Technical Journal. 1999. V. 4. № 1. P. 187–206.
14. Islam M.N. Raman Amplifiers for Telecommunications // Journals of Selected Topics in Quantum Electronics. 2002. V. 8. № 3. P. 548–559.
15. Hwang S., Song K.-W., Song K.-U., Park S-H., Nilsson J., Cho K. Comparitive high power conversion efficiency of C-plus L-band EDFA // Electronics Letters. 2001. V. 37. № 25. P. 1539–1541.
16. Agrawal G.P. Fiber-Optic Communication Systems // 3rd Edition. John Wiley and Sons, USA. 2002.
17. Becker P.C., Olsson N.A., Simpson J.R. Erbium-doped fiber amplifiers funda mentals and technology // Academic Press, 1999. P. 47.
18. Agrawal G.P. Nonlinear Fiber Optics. 2nd Edition. Academic press, New York. 1995.
19. Carena A., Curri V., Poggiolini P. On the Optimization of Hybrid Raman/Erbium-Doped Fiber Amplifiers // IEEE Photonics Technology Letters. 2001. V. 13. № 11. P. 1170–1172.
20. Tiwari U., Thyagarajan K., Shenoy M.R. Simulation and Experimental Characterization of Raman/EDFA Hybrid Amplifier with Enhanced Performance // Optics Communications, ELSEVIER. 2009. V. 82. № 8. P. 1563–1566.
21. Martini M.M.J., Castellani C.E.S., Pontes M.J., Ribeiro M.R.N., Kalinowski H.1. Multipump Optimization for RAMAN+EDFA hybrid amplifiers under pump residual recycling // SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference. IMOC. 2009. P. 117–121.

22. Hansen P.B., Eskildsen L., Stentz A.J., Strasser T.A., Judkins J., DeMarco J.J., Pedrazzani R., DiGiovanni D.J. Rayleigh scattering limitations in distributed Raman pre-amplifiers // IEEE Photonics Technology Letters. 1998. V. 10. № 1. P. 159–161.
23. Emori Y., Kado S., Namiki S. Broadband flat-gain and low-noise Raman amplifiers pumped by wavelengthmultiplexed high power laser diodes // Optical Fiber Technology. 2002. V. 8. № 2. P. 107–122.
24. Yan M., Chen J., Jiang W., Li J., Chen J., Li X. Automatic design scheme for optical fiber Raman amplifiers backward pumped with multiple laser diode pumps // IEEE Photonics Technology Letters. 2001. V. 13. № 9. P. 948–950.