ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 681.7.069.24

Femtosecond laser based on Yb:KYW crystals with suppression of spectral narrowing in a regenerative amplifier by spectral profiling of the pulse

For Russian citation (Opticheskii Zhurnal):

G. H. Kim, J. H. Yang, D. S. Lee, Яшин В.Е., Кулик А.В., Салль Е.Г., Чижов С.А., U. Kang Фемтосекундный лазер на кристаллах Yb:KYW с подавлением сужения спектра в регенеративном усилителе путем спектрального профилирования импульса // Оптический журнал. 2013. Т. 80. № 3. С. 22–29.

 

G. H. Kim, J. H. Yang, D. S. Lee, Yashin V.E., Kulik A.V., Sall E.G., Chizhov S.A., U. Kang Femtosecond laser based on Yb:KYW crystals with suppression of spectral narrowing in a regenerative amplifier by spectral profiling of the pulse [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 3. P. 22–29.

For citation (Journal of Optical Technology):

G. H. Kim, J. H. Yang, D. S. Lee, A. V. Kulik, E. G. Sall’, S. A. Chizhov, U. Kang, and V. E. Yashin, "Femtosecond laser based on Yb:KYW crystals with suppression of spectral narrowing in a regenerative amplifier by spectral profiling of the pulse," Journal of Optical Technology. 80(3), 142-147 (2013). https://doi.org/10.1364/JOT.80.000142

Abstract:

This paper describes a femtosecond laser regenerative amplifier based on two Yb:KYW crystals with direct longitudinal pumping by powerful linear arrays of semiconductor injection lasers having fiber output. To prevent spectral narrowing during amplification and the corresponding lengthening of the amplified pulse when it is compressed, a combination of two Yb:KYW crystals were used, with the spectral maxima of the amplification shifted relative to each other and with spectral profiling of the amplified radiation. The mean power of the laser before compression reached 12 W at a pulse-repetition rate in the range 50–500 kHz and a spectral width of 10 nm, which is about a factor of 2 greater than the spectral width without profiling. The pulse width after compression in the compressor equalled 182 fs, while the mean power exceeded 8 W. The laser system thus developed can be used as a source of powerful femtosecond light pulses for the microprocessing of materials and for biomedical applications.

Keywords:

femtosecond generator, femtosecond pulses, pulse width, diode laser, Yb:KYW active element

Acknowledgements:

This work was carried out with the financial support of the government of Seoul under a research contract of program WR100001. V. E. Yashin expresses gratitude to the Ministry of Education and Technology and the Korean Federation of Societies of Science and Technology for financial support under Program Brain Pool.

OCIS codes: 140.3480, 140.7090

References:

1. F. Dausinger, F. Lichtner, and H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications (Springer, Berlin, 2004).
2. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).

3. S. C. Backus, G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High-power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207 (1998).
4. F. Druon, F. Balembois, and P. Georges, “New materials for short-pulse amplifiers,” IEEE Photon. J. 3, 268 (2011).
5. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Yb-doped KYWO42 and KGdWO42,” Opt. Lett. 22, 1317 (1997).
6. D. Nickel, C. Stolzenburg, A. Giesen, and F. Butze, “Ultrafast thin-disk Yb:KYWO42 regenerative amplifier with a 200 kHz repetition rate,” Opt. Lett. 29, 2764 (2004).
7. M. Delaigue, I. Manek-Hoenninger, F. Salin, C. Hoenninger, P. Rigail, A. Courjaud, and E. Mottay, “300 kHz femtosecond Yb:KGW regenerative amplifier using an acousto-optic Q-switch,” Appl. Phys. B 84, 375 (2006).
8. H. Liu, J. Nees, G. Mourou, S. Biswal, G. J. Spuehler, U. Keller, and N. V. Kuleshov, “Yb:KGdWO42 chirped-pulse regenerative amplifiers,” Opt. Commun. 203, 315 (2002).
9. G. Cheriaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, “Aberration-free stretcher design for ultrashort-pulse amplification,” Opt. Lett. 21, 414 (1996).
10. C. Barty, G. Korn, F. Raksi, C. Rose-Petruck, J. Squier, A. Tian, K. Wilson, V. Yakovlev, and K. Yamakawa, “Regenerative pulse shaping and amplification of ultrabroadband optical pulses,” Opt. Lett. 21, 219 (1996).
11. P. Raybaut, F. Balembois, F. Druon, and P. Georges, “Numerical and experimental study of gain narrowing in ytterbium-based regenerative amplifiers,” IEEE J. Quantum Electron. 41, 415 (2005).
12. C. Rouyer, E. Mazataud, I. Allais, A. Pierre, S. Seznec, C. Sauteret, G. Mourou, and A. Migus, “Generation of 50 TW femtosecond pulses in a Ti:sapphire/Nd:glass chain,” Opt. Lett. 18, 214 (1993).
13. I. N. Ross, M. Trentelman, and C. N. Danson, “Optimization of a chirped-pulse amplification Nd:glass laser,” Appl. Opt. 36, 9348 (1997).
14. U. Buenting, H. Sayinc, D. Wandt, U. Morgner, and D. Kracht, “Regenerative thin disk amplifier with combined gain spectra producing 500 μJ sub-200 fs pulses,” Opt. Express 17, 8046 (2009).
15. A. Buettner, U. Buenting, D. Wandt, J. Neumann, and D. Kracht, “Ultrafast double-slab regenerative amplifier with combined gain spectra and intracavity dispersion compensation,” Opt. Express 18, 21973 (2010).
16. G. H. Kim, J. Yang, S. A. Chizhov, E. G. Sall, A. V. Kulik, V. E. Yashin, D. S. Lee, and U. Kang, “High-average-power ultrafast CPA Yb:KYW laser system with dual-slab amplifier,” Opt. Express 20, 3434 (2012).
17. I. P. Christov, “Amplification of femtosecond pulses in a spatially dispersive scheme,” Opt. Lett. 17, 742 (1992).
18. N. B. Chichkov, U. Bünting, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Spatially dispersive regenerative amplification of ultrashort laser pulses,” Opt. Express 17, 24075 (2009).
19. L. Shah, Z. Liu, I. Hart, G. Imeshev, G. Gyu, C. Cho, and M. E. Fermann, “High-energy femtosecond Yb cubicon fiber amplifier,” Opt. Express 13, 4717 (2005).
20. Y. Zaouter, D. N. Papadopoulos, M. Hanna, J. Boullet, L. Huang, C. Aguergaray, F. Druon, E. Mottay, P. Georges, and E. Cormier, “Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers,” Opt. Lett. 33, 107 (2008).
21. G. H. Kim, U. Kang, D. Heo, V. E. Yashin, A. V. Kulik, E. G. Sall’, and S. A. Chizhov, “A compact femtosecond generator based on an Yb:KYW crystal with direct laser-diode pumping,” Opt. Zh. 77, No. 4, 3 (2010) [J. Opt. Technol. 77, 225 (2010)].
22. X. Lu, C. Li, Y. Leng, C. Wang, C. Zhang, X. Liang, R. Li, and Z. Xu, “Birefringent plate design for broadband spectral shaping in a Ti:sapphire regenerative amplifier,” Chin. Opt. Lett. 5, 493 (2007).
23. A. A. Mak, V. A. Fromzel’, L. N. Soms, and V. E. Yashin, Neodymium Glass Lasers (Nauka, Moscow, 1990).
24. S. M. Kobtsev and N. A. Sventsitskaya, “Application of birefringent filters in continuous-wave tunable lasers: a review,” Opt. Spectrosc. 73, 114 (1992).
25. M. C. Pujol, M. A. Bursukova, F. Güell, X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, F. Díaz, P. Klopp, U. Griebner, and V. Petrov, “Growth, optical characterization, and laser operation of a stoichiometric crystal KYbWO42,” Phys. Rev. B 65, 165121 (2002).
26. U. Buenting, P. Wessels, H. Sayinc, O. Prochnow, D. Wandt, and D. Kracht, “Ultrafast Yb:KYW regenerative amplifier with combined gain spectra of the optical axes N m and N p,” Proc. SPIE 6871, 68711C (2008).