ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 547.97: 535.8, 541.147

Structural self-organization mechanism of ZnO nanoparticles in acrylate composites

For Russian citation (Opticheskii Zhurnal):

Бурункова Ю.Э., Денисюк И.Ю., Семьина С.А. Механизм структурной самоорганизации наночастиц ZnO в акрилатных композитах // Оптический журнал. 2013. Т. 80. № 3. С. 79–86.

 

Burunkova Yu.E., Denisyuk I.Yu., Semiyina S.A. Structural self-organization mechanism of ZnO nanoparticles in acrylate composites [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 3. P. 79–86.

For citation (Journal of Optical Technology):

Yu. É. Burunkova, I. Yu. Denisyuk, and S. A. Sem’ina, "Structural self-organization mechanism of ZnO nanoparticles in acrylate composites," Journal of Optical Technology. 80(3), 187-192 (2013). https://doi.org/10.1364/JOT.80.000187

Abstract:

Transparent homogeneous polymeric composite media have been obtained and investigated that contain up to 14 wt. % of ZnO nanoparticles. It has been established that the physical properties of the material, such as light scattering, Brinell hardness, and moisture absorption, vary nonmonotonically as the concentration of nanoparticles increases as a result of the modification of the internal structure of the nanocomposites. The nanocomposite structure has been investigated by the methods of IR spectroscopy and atomic-force microscopy. By comparison with the unmodified polymeric matrix, the hardness is not degraded, while the light scattering and moisture absorption are reduced. Because the active groups of one of the monomers (the carboxyl groups) interact with the surface of the nanoparticles, the latter are uniformly distributed over the entire volume of the material, and this forms an optically homogeneous nanocomposite medium. The ZnO nanoparticles are photocatalysts and centers of the polymerization process.

Keywords:

UV hardening nanocomposite, structure of nanocomposite, nanoparticles

OCIS codes: 310.6870, 160.5470, 240.0310

References:

1. A. S. Rosenberg, G. I. Dzhardimalieva, and A. D. Pomogailo, “Polymer composites of nano-sized particles isolated in matrix,” Polym. Adv. Technol. 9, 527 (1998).
2. A. D. Pomogailo and V. S. Savost’yanov, Synthesis and Polymerization of Metal-Containing Monomers (CRC Press, Boca Raton, Fla., 1994).
3. A. S. Pomogailo, A. S. Rozenberg, G. I. Dzhardimalieva, and M. Leonowicz, “Polymer nanocomposites on the base of metal carboxylates,” Adv. Mater. Sci. 1, No. 1, 19 (2001).
4. M. J. Height, S. E. Pratsinis, O. Mekasuwandumrong, and P. Praserthdam, “Ag-ZnO catalysts for UV-photodegradation of methylene blue,” Appl. Catal., B 63, 305 (2006).
5. L. Guedri-Knani, J. L. Gardette, M. Jacquet, and A. Rivaton, “Photoprotection of poly(ethylene-naphthalate) by zinc oxide coating,” Surf. Coat. Technol. 180–181, 71 (2004).
6. Z. Y. Fan and J. G. Lu, “Zinc oxide nanostructures: synthesis and properties,” J. Nanosci. Nanotechnol. 5, 1561 (2005).
7. X. Fang, Y. Bando, and U. K. Gautam, “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors,” Crit. Rev. Solid State Mater. Sci. 34, Nos. 3–4, 190 (2009).
8. P. Liu and T. Wang, “Poly(hydroethyl acrylate) grafted from ZnO nanoparticles via surface-initiated atom transfer radical polymerization,” Curr. Appl. Phys. 8, No. 1, 66 (2008).
9. Y. Li, G. Li, and Q. Yin, “Preparation of ZnO varistors by solution nanocoating technique,” Mater. Sci. Eng., B 130, 264 (2006).
10. M. R. Vaezi and S. K. Sadrnezhaad, “Nanopowder synthesis of zinc oxide via solochemical processing,” Mater. Des. 28, 515 (2007).
11. S.-Y. Chu, T.-M. Yan, and S.-L. Chen, “Analysis of ZnO varistors prepared by the sol–gel method,” Ceram. Int. 26, 733 (2000).
12. G. Westin, A. Ekstrand, M. Nygren, R. O. Sterlund, and P. Merkelbach, “Preparation of ZnO-based varistors by the sol–gel technique,” J. Mater. Chem. 4, 615 (1994).
13. S. C. Pillai, J. M. Kelly, D. E. McCormack, and R. Ramesh, “Self-assembled arrays of ZnO nanoparticles and their application as varistor materials,” J. Mater. Chem. 14, 1572 (2004).
14. M. I. Fokina, I. Yu. Denisyuk, Yu. É. Burunkova, and L. N. Kaporskiĭ, “The formation of microstructures as a result of the self-focusing of light in a photopolymer nanocomposite,” Opt. Zh. 75, No. 10, 66 (2008) [J. Opt. Technol. 75, 658 (2008)].
15. I. Yu. Denisyuk, T. R. Williams, and J. E. Burunkova, “Hybrid optical material with nanoparticles at high concentrations in UV-curable polymers—technology and properties,” Mol. Cryst. Liq. Cryst. 497, 142 (2008).
16. T. R. Williams, I. Yu. Denisyuk, and J. E. Burunkova, “Filled polymers with high nanoparticles concentration—synthesis, optical and rheological proprieties,” J. Appl. Polym. Sci. 116, 1857 (2010).
17. J. A. Burunkova, I. Yu. Denisyuk, N. N. Arefeva, and S. A. Semina, “Influence of SiO2 nanoaddition on the self organization via UV-polymerization of acrylate nanocomposites,” Mol. Cryst. Liq. Cryst. 536, 10 (2011).
18. I. Yu. Denisyuk, N. D. Vorzobova, N. O. Sobeshuk, and J. E. Burunkova, “Subwavelength microstructures fabrication by self-organization processes in photopolymerizable nanocomposite,” J. Nanomater. 2012, 11 (2012), Special issue on Nanocrystals-Related Synthesis, Assembly, and Energy Applications.
19. A. P. Vinogradov, Electrodynamics of Composite Materials (Editorial URSS, Moscow, 2001).
20. J. E. Spanier and I. P. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B 61, 10437 (2000).
21. S. Jiguet, A. Bertsch, M. Judelewicz, H. Hofmann, and P. Renaud, “SU-8 nanocomposite photoresist with low stress properties for microfabrication applications,” Microelectron. Eng. 83, 1966 (2006).
22. R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometric Identification of Organic Compounds (John Wiley & Sons, New York, 1981).
23. S. C. Liufu, H. N. Xiao, and Y. P. Li, “Thermal analysis and degradation mechanism of polyacrylate/ZnO nanocomposites,” Polym. Degrad. Stab. 87, 103 (2005).
24. X. Lu, Y. Zhao, and C. Wang, “Fabrication of PbS nanoparticles in polymer-fiber matrices by electrospinning,” Adv. Mater. 17, 2485 (2005).
25. X. Lu, Y. Zhao, C. Wang, and Y. Wei, “Fabrication of CdS nanorods in PVP fiber matrices by electrospinning,” Macromol. Rapid Commun. 26, 1325 (2005).
26. J. Bai, Y. Li, C. Zhang, X. Liang, and Q. Yang, “Preparing AgBr nanoparticles in poly(vinyl pyrrolidone) (PVP) nanofibers,” Colloids Surf., A 329, 165 (2008).
27. A. Kh. Kuptsov and G. N. Zhizhin, Fourier Raman-Scattering Spectra and Infrared Absorption of Polymers (Fizmatlit, Moscow, 2001).
28. D. Beydoun, R. Amal, G. Low, and S. McEvoy, “Role of nanoparticles in photocatalysis,” J. Nanopart. Res. 1, 439 (1999).
29. C. Dong and X. Ni, “The photopolymerization and characterization of methylmethacrylate initiated by nanosized titanium dioxide,” J. Macromol. Sci., Pure Appl. Chem. 41, 547 (2004).
30. A. Hagfeldt and M. Graetzel, “Light-induced redox reactions in nanocrystalline systems,” Chem. Rev. No. 1, 49 (1995).