ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 53.06, 538.951, 538.958

On the interatomic interaction potential that describes bond weakening in classical molecular-dynamic modelling

For Russian citation (Opticheskii Zhurnal):

Липп В.П., Иванов Д.С., Ретфельд Б., Гарсия М.Э. О межатомном потенциале взаимодействия, описывающий ослабление связей в классическом молекулярно-динамическом моделировании // Оптический журнал. 2014. Т. 81. № 5. С. 32–34.

 

Lipp V.P., Ivanov D.S., Rethfeld B., Garcia M.E. On the interatomic interaction potential that describes bond weakening in classical molecular-dynamic modelling [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 5. P. 32–34.

For citation (Journal of Optical Technology):

V. P. Lipp, D. S. Ivanov, B. Rethfeld, and M. E. Garcia, "On the interatomic interaction potential that describes bond weakening in classical molecular-dynamic modelling," Journal of Optical Technology. 81(5), 254-255 (2014). https://doi.org/10.1364/JOT.81.000254

Abstract:

Rapid nonthermal melting can occur under the action of a supershort laser pulse in semiconductors. An attractive method for quantitatively describing the kinetics of such effects can be molecular-dynamic modelling, in which the interatomic potential depends on the parameters of the excited carriers. This paper discusses the properties that such a potential must possess. Based on a simple model for photoexcited carriers, it is shown that the condition of conservation of energy imposes definite requirements on the potential.

Keywords:

molecular dynamics, supershort laser pulses, interatomic potential, electron–hole pairs, non-thermal melting, laser interaction with matter

OCIS codes: 000.6800, 140.3390, 140.7090, 160.6000

References:

1. Rousse A., Rischel C., Fourmaux S., Uschmann I., Sebban S., Grillon G., Balcou Ph., Förster E., Geindre J.P., Audebert P., Gauthier J.C., Hulin D. Non-thermal melting in semiconductors measured at femtosecond resolution // Nature. 2001. V. 410. P. 65–68.
2. Stampfli P., Bennemann K. H. Theory of the instability of the diamond structure of Si, Ge, and C induced by a dense electron-hole plasma. // Phys. Rev. B. 1990. V. 42. P. 7163–7173.
3. Stampfli P., Bennemann K. H. Dynamical theory of the laser-induced instability of silicon. // Phys. Rev. B. 1992. B. V. 46. P. 10686–10692.
4. Korfiatis D.P., Thoma K.-A. Th., Vardaxoglou J.C. Conditions for femtosecond laser melting of silicon // J. Phys. D: Appl. Phys. 2007. V. 40. P. 6803–6808.
5. Zijlstra E.S., Zier T., Bauerhenne B., Krylow S., Geiger P.M., Garcia M.E. Femtosecond-laser-induced bond breaking and structural modifications in silicon, TiO2, and defective graphene: an ab initio molecular dynamics study // Appl. Phys. A. 2014. V. 114. P. 1–9.
6. Shokeen L., Schelling P.K. Thermodynamics and kinetics of silicon under conditions of strong electronic excitation // J. Appl. Phys. 2011. V. 109. P. 073503.
7. Van Driel H.M. Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses // Phys. Rev. B. 1987. V. 35. P. 8166–8176.
8. Vankemmel R., Schoenmaker W., De Meyer K. A unified wide temperature range model for the energy gap, the effective carrier mass, and intrinsic concentration in silicon // Solid State Electronics. 1993. V. 36. P. 1379–1384.
9. Shokeen L., Schelling P.K. Role of electronic-excitation effects in the melting and ablation of laser-excited silicon // Computational Materials Science. 2013. V. 67. P. 316–328.