ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 533.9.082.5

Nanostructuring of the surface of silicate glass by femtosecond laser pulses in the UV range

For Russian citation (Opticheskii Zhurnal):

Ионин А.А., Кудряшов С.И., Селезнев Л.В., Синицын Д.В., Апостолова Ц. Наноструктурирование поверхности силикатного стекла фемтосекундными лазерными импульсами ультрафиолетового диапазона // Оптический журнал. 2014. Т. 81. № 5. С. 43–54.

 

Ionin A.A., Kudryashov S.I., Seleznev L.V., Sinitsyn D.V., Apostolova Ts. Nanostructuring of the surface of silicate glass by femtosecond laser pulses in the UV range [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 5. P. 43–54.

For citation (Journal of Optical Technology):

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, and T. Apostolova, "Nanostructuring of the surface of silicate glass by femtosecond laser pulses in the UV range," Journal of Optical Technology. 81(5), 262-269 (2014). https://doi.org/10.1364/JOT.81.000262

Abstract:

The electron dynamics and surface ablation of silicate glass excited by single UV femtosecond pulses have been studied by photoluminescence and contact ultrasound diagnostics. At low energy densities of the laser radiation, the photoluminescence signal reveals the linear character of the photogeneration of the electron–hole plasma, accompanied by its radiative recombination, carrier autolocalization, and point-defect generation. At high energy densities, rapid Auger recombination of the dense electron–hole plasma saturates the luminescence output, allowing only ultrasound diagnostics of the photoexcitation and subsequent thermal processes, including spallation and fragmentation ablation. The results of the experimental studies of the electron dynamics are confirmed by the results of its numerical modelling in terms of the quantum kinetic model, based on a solution of the Boltzmann equation. Surface nanolattices are generated on the surface of the glass in the multipulse laser-excitation regime.

Keywords:

UV femtosecond laser pulses, silicate glass, electron dynamics, ablation and surface nanostructuring

Acknowledgements:

The authors are grateful for support to the Russian Foundation for Basic Research (Project No. 13-02-00971) and also to the Presidium of the Russian Academy of Sciences (Program Nos. 13 and 24).

OCIS codes: 320.7130

References:

1. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A 77, 229 (2004).
2. K. Ke, A. P. Joglekar, H. Liu, E. Meyhofer, E. Hasselbrink, G. Mourou, and A. J. Hunt, “The physics and limits of femtosecond laser micromachining,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 3, 2005, pp. 1912–1914.
3. P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799 (1997).
4. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse-induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
5. D. Ashkenasi, G. Mueller, A. Rosenfeld, R. Stoian, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Fundamentals and advantages of ultrafast microstructuring of transparent materials,” Appl. Phys. A 77, 223 (2003).
6. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Lhamhawy, and D. Von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
7. D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, No. 4, 803 (2008).
8. V. M. Gordienko, P. M. Mikheev, and F. V. Potemkin, “Generation of coherent terahertz phonons by sharp focusing of a femtosecond laser beam in the bulk of crystalline insulators in a regime of plasma formation,” Pis’ma Zh. Eksp. Teor. Fiz. 92, 553 (2010) [JETP Lett. 92, 502 (2010)].
9. M. Watanabe, S. Joudkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959 (1999).
10. S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, “Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics,” Usp. Fiz. Nauk 147, 675 (1985) [Sov. Phys. Usp. 28, 1084 (1985)].
11. V. D. Zvorykin, A. A. Ionin, S. I. Kudryashov, Yu. N. Ponomarev, L. V. Seleznev, D. V. Sinitsyn, and B. A. Tikhomirov, “Nonlinear absorption of ultraviolet femtosecond laser pulses in argon,” Pis’ma Zh. Eksp. Teor. Fiz. 88, 10 (2008) [JETP Lett. 88, 8 (2008)].
12. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, New York, 2010; Fizmatlit, Moscow, 2002).
13. J. R. Chelikowsky and M. Schlütter, “Electron states in α-quartz: A self-consistent pseudopotential calculation,” Phys. Rev. B 15, 4020 (1977).
14. A. R. Silin’ and A. N. Trukhin, Point Defects and Elementary Excitations in Crystalline and Glassy SiO 2 (Zinatne, Riga, 1985).
15. S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of micro-plasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92, No. 10, 101916 (2008).
16. A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796 (2003).
17. K. S. Song and R. T. Williams, Self-Trapped Excitons (Springer, Berlin, 1993).
18. C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys. 103, 063516 (2008).
19. R. E. Schenker and W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065 (1997).
20. S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2 ,” J. Phys. Condens. Matter 8, No. 9, 1281 (1996).
21. O. Matsuda, O. B. Wright, D. H. Hurley, V. E. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with ultrashort optical pulses,” Phys. Rev. Lett. 93, 095501 (2004).
22. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, New York, 1993).
23. A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” Zh. Eksp. Teor. Fiz. 143, 403 (2013) [JETP 116, 347 (2013)].
24. S. I. Kudryashov, S. Paul, K. Lyon, and S. D. Allen, “Dynamics of laser-induced surface phase explosion in silicon,” Appl. Phys. Lett. 98, 254102 (2011).
25. E. Leveugle, D. S. Ivanov, and L. V. Zhigilei, “Photomechanical spallation of molecular and metal targets: molecular dynamics study,” Appl. Phys. A 79, 1643 (2004).
26. A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” Pis’ma Zh. Eksp. Teor. Fiz. 94, 289 (2011) [JETP Lett. 94, 266 (2011)].
27. E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one- dimensional quasi-periodic nanogratings of its relief,” Zh. Eksp. Teor. Fiz. 140, 21 (2011) [JETP 113, 14 (2011)].
28. X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, “Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses,” Opt. Lett. 35, 1248 (2010).
29. T. Apostolova, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, and D. V. Sinitsyn, “Self-limited ionization in band-gap re-normalized GaAs at high femtosecond laser intensities,” Opt. Eng. 51, 121808 (2012).
30. I. S. Grigor’ev and E. Z. Meı˘likhov, eds., Physical Quantities (Énergoatomizdat, Moscow, 1991).
31. V. Yu. Fedorov and V. P. Kandidov, “Filamentation of laser pulses with different wavelengths in air,” Laser Phys. 18, 1530 (2008).
32. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Multiple filamentation of intense femtosecond laser pulses in air,” Pis’ma Zh. Eksp. Teor. Fiz. 90, 471 (2009) [JETP Lett. 90, 423 (2009)].
33. A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, and S. L. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B 73, No. 3, 287 (2001).
34. C. D. Spataru, L. X. Benedict, and S. G. Louie, “Ab initio calculation of band-gap renormalization in highly excited GaAs,” Phys. Rev. B 69, 205204 (2004).
35. S. I. Kudryashov, M. Kandyla, C. Roeser, and E. Mazur, “Intraband and interband optical deformation potentials in femtosecond-laser excited α-Te,” Phys. Rev. B 75, 085207 (2007).
36. V. M. Zolotarev, V. N. Morozov, and E. V. Smirnova, Optical Constants of Natural and Artificial Media (Khimiya, Leningrad, 1984).
37. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, Orlando, Fla., 1998).