ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 681.7.028,621.941.1

Engineering method for calculating the tolerances for the primary errors in the centering of lens objectives

For Russian citation (Opticheskii Zhurnal):

Латыев С.М., Тимощук И.Н. Инженерная методика расчёта допусков на первичные погрешности центрировки линзовых объективов // Оптический журнал. 2016. Т. 83. № 12. С. 41–47.

 

Latyev S.M., Timoshchuk I.N. Engineering method for calculating the tolerances for the primary errors in the centering of lens objectives [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 12. P. 41–47.

For citation (Journal of Optical Technology):

S. M. Latyev and I. N. Timoschuk, "Engineering method for calculating the tolerances for the primary errors in the centering of lens objectives," Journal of Optical Technology. 83(12), 743-748 (2016). https://doi.org/10.1364/JOT.83.000743

Abstract:

The presented method allows for the calculation—at the stage of the design of the objective—of the tolerances for technological errors that cause decentering of the lens components of the objective. The calculation is performed on the basis of the required values for image aberrations, the optical scheme, the design of the objective, and the types of laws of error scatter considering production conditions.

Keywords:

lens, cells, centering, adjustment

Acknowledgements:

The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (02.G25.31.0195).

OCIS codes: 220.0220; 230.0230

References:

1. N. N. Gubel, Aberrations of Decentered Optical Systems (Mashinostroenie, Leningrad, 1975).
2. V. A. Zverev, E. S. Rytova, and I. N. Timoschuk, “How the decentering of surfaces of revolution affects the position of the image plane,” J. Opt. Technol. 77(6), 357–361 (2010) [Opt. Zh. 77(6), 8–13 (2010)].
3. M. M. Rusinov, A. P. Grammatin, P. D. Ivanov, L. N. Andreev, N. A. Agaltsov, G. G. Ishanin, O. N. Vasilevsky, and S. A. Rodionov, eds., Computational Optics (Mashinostroenie, Leningrad, 1984).
4. M. N. Sokolsky, Tolerances and Quality of Optical Images (Mashinostroenie, Leningrad, 1989).
5. L. I. Krynin, Fundamentals of Objective Design (ITMO, Saint Petersburg, 2006).
6. P. R. Yoder, ed., Mounting Optics in Optical Instruments (SPIE, Bellingham, Washington, 2008).
7. M. Sondermann, “Mechanische Verbindungen zum Aufbauoptischer Hochleistungssysteme,” in Berichte aus dem IMGK Band 19 (Technische Universitaet Ilmenau, 2011).
8. S. Frank, “Justierdrehen—eine Technologie fuer Hohleistungsoptik,” in Bericht IMK No. 14 (Technische Universitaet Ilmenau, 2008).
9. S. M. Latyev, D. M. Rumyantsev, and P. A. Kuritsyn, “Design and process methods of centering lens systems,” J. Opt. Technol. 80(3), 197–200 (2013) [Opt. Zh. 80(3), 92–96 (2013)].
10. M. Sondermann, H. Scheibe, T. Beier, and R. Theska, “Technologien zur Herstellung optischer Hochleistungssysteme kleiner Durchmesser,” Jahrbuch Optik und Feinmechanik 60, 171–198 (2014).
11. S. A. Rodionov, Automation of Design of Optical Systems (Mashinostroenie, Leningrad, 1982).
12. S. M. Latyev, Design of Accurate (Optical) Devices (Lan’, Saint Petersburg, 2015).
13. S. M. Latyew and A. G. Tatarinov, “Toleranzsynthese bei der Geräteentwicklung,” Feingerätetechnik (11), 497–501 (1987).
14. A. Maréchal and M. Franson, The Structure of the Optical Image (Mir, Moscow, 1964).