ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

Novel high gain and wide band hybrid amplifier designed with a combination of an EYDFA and a discrete Raman amplifier

For Russian citation (Opticheskii Zhurnal):

Sivanantha Raja, S. Vigneshwari, S. Selvendran Novel high gain and wide band hybrid amplifier designed with a combination of an EYDFA and a discrete Raman amplifier (Новая схема широкополосного гибридного усилителя с большим усилением на основе комбинации эрбий-иттербиевого волоконного усилителя и дискретного рамановского усилителя) [на англ. яз.] // Оптический журнал. 2016. Т. 83. № 4. С. 69–79.

 

Sivanantha Raja, S. Vigneshwari, S. Selvendran Novel high gain and wide band hybrid amplifier designed with a combination of an EYDFA and a discrete Raman amplifier (Новая схема широкополосного гибридного усилителя с большим усилением на основе комбинации эрбий-иттербиевого волоконного усилителя и дискретного рамановского усилителя) [in English] // Opticheskii Zhurnal. 2016. V. 83. № 4. P. 69–79.

For citation (Journal of Optical Technology):

Sivanantha Raja, S. Vigneshwari, and S. Selvendran, "Novel high gain and wide band hybrid amplifier designed with a combination of an EYDFA and a discrete Raman amplifier," Journal of Optical Technology. 83(4), 249-256 (2016). https://doi.org/10.1364/JOT.83.000249

Abstract:

In an optical communication network, over a broad range of spectrum, gain of the amplifier must be flattened in order to increase the bandwidth utilization of the network. Here we analyse a novel approach of designing a hybrid amplifier with a combination of Single mode Erbium Ytterbium co-doped fibre amplifier and discrete Raman amplifier to flatten its gain over the optical spectrum of C and L bands, which is about 90 nm of spectral width. This hybrid amplifier requires only 5 optimal pump signals in RA and there is no need of any gain flattening filter in it. The performance of thus simulated hybrid amplifier is analysed with the help of 110*40 Gb/s non return to zero dense wavelength division multiplexed signals as the input. They cover the entire C and L bands and the presence of dense channels also ensures the accurate measurement of important parameters of hybrid amplifier such as maximum gain, gain ripple, noise figure and optical signal to noise ratio (OSNR). The five pump signals of RA are spaced equally, unequally and semi-unequally in order to attain the objective. The least gain ripple is obtained for semi-unequal pump frequency spacing. The length of SM EYDFA, RA, power of pump signals and power of DWDM input signals are optimized through Multi-parameter multi-target optimization tool of Optisystem simulation software. The five pumping signals of RA are tested with Forward, Backward and both Forward and Backward schemes in order to analyse the performance of the hybrid amplifier. Out of all experiments, SM EYDFA+RA Forward Pumping scheme offers superior performances such as maximum gain of 31.2 dB, very low gain ripple of 2.09 dB (6.7% of maximum gain), maximum noise figure of 4.68 dB and maximum OSNR of 34.23 dB. This new design of hybrid amplifier with superior gain flattening
performance will be very much useful for cable television or community antenna television (CATV) and telecommunication networks.

Keywords:

Single mode Erbium-Ytterbium co-doped fibre amplifier (SM EYDFA), Raman amplifier (RA), Hybrid amplifier (HA), Bandwidth (BW), Noise figure (NF), Gain, Gain ripple, Dense wavelength division multiplexing (DWDM), Optical signal to noise ratio (OSNR)

Acknowledgements:

The authors thankfully acknowledge the Department of Science and Technology (DST), New Delhi for their Fund for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions – (FIST) grant through the order No.SR/FST/College-061/2011(C) to procure the Optiwave suite Simulation tools.

OCIS codes: 060.2330, 230.4480, 060.2320, 060.2410

References:

1. Yin Hongxi, Richardson David J. Optical Code Division Multiple Access Communication Networks. Berlin, Heidelberg: Springer, 2009. P. 1–25.
2. Francis Idachaba, Dike U. Ike, Orovwode Hope. Future trends in fibre optics communication // Proceedings of the World Congress on Engineering. London. 2014. V. 1. P. 438–442.
3. Selvendran S., Sivanantharaja A. Analysis of four wave mixing under different all optical modulation formats // Journal of Nonlinear Optical Physics & Materials. 2013. V. 22. № 3. P. 1350034-1–20.
4. Bobrovs V., Olonkins S., Alsevska A., Gegere L., Ivanovs G. Comparative performance of Raman-SOA and Raman-EDFA hybrid optical amplifiers in DWDM transmission systems // International Journal of Physical Sciences. 2013. V. 8. № 39. P. 1898–1906.
5. Inderpreet Kaur, Neena Gupta. Hybrid fiber amplifier // Optical Communications Systems / Ed. by Dr. Narottam Das. Croatia – EUROPEAN UNION, InTech. 2012. Chapter 4. P. 103–123. Available from: http://www.intechopen.com/books/optical-communications-systems/hybrid-fiber-amplifiers .
6. White Paper. Introduction to optical amplifiers. Sunnyvale, CA: Finisar Corporation, 2010. P. 1–6. Available from: https://www.finisar.com/sites/default/files/resources/Introduction%20to%20Optical%20Amplifiers.pdf.
7. Surindar Singh. Simulation and optimization of optical amplifiers in optical communication networks // Ph.D. thesis. India, Thapar: Thapar University, 2007. 273 p.
8. Max M.-K. Liu. Principles and applications of optical communications. New Delhi: Tata McGraw-Hill, 2010. Chapter 17. 853 p.
9. Inderpreet Kaur, Neena Gupta. Performance enhancement of DWDM systems using HTE configuration for 1479–1555 nm wavelength range // World Academy of Science. Engineering and Technology. International Scholarly and Scientific Research & Innovation. 2013. V. 7. P. 615–619.
10. Bass Michael, De Cusatis Casimer, Enoch Jay, Lakshminarayanan Vasudevan, Li Guifang, MacDonald Carolyn, Mahajan Virendra, Van Stryland Eric. Handbook of optics. V. V. Atmospheric Optics. Modulators. Fibre Optics. X-Ray and Neutron Optics. United States: McGraw-Hill, 2010. Chapter 14. P. 14.1–14.11.
11. Fady I. El-Nahal, Abdel Hakeim, Husein M. Thulium doped fibre amplifier (TDFA) for S-band WDM systems // Open Journal of Applied Sciences. 2012. P. 5–9.
12. Paschotta R., Nilsson J., Tropper A.C, Hanna D.C. Ytterbium-doped fibre amplifiers // IEEE Journal of Quantum Electronics. 1997. V. 33. № 7. P. 1049–1056.

13. Jonathan Hu, Brian S. Marks, Curtis R. Menyuk. Flat-Gain Fibre RAs Using Equally Spaced Pumps // Journal of Lightwave Technology. 2004. V. 22. № 6. P. 1519–1522.
14. Hiroji Masuda. Hybrid EDFA/Raman amplifiers: Raman amplifiers for telecommunications 2 // Springer Series in Optical Sciences / Ed. by Mohammed N. Islam. NY: Springer-Verlag, 2004. V. 90/2. P. 413–443.
15. Clifford Headley, Govind P. Agrawal. Raman amplification in fibre optical communication systems // Elsevier Academic Press. 2005. P. 169–262.
16. Govind P. Agrawal. Fibre optic communication systems. NY: John Wiley & Sons. P. 232–243.
17. Paul F. Wysocki, Namkyoo Park, David Di Giovanni. Dual-stage erbium-doped, erbium/ytterbium-codoped fibre amplifier with up to +26 dBm output power and a 17 nm flat spectrum // Optics Letters. 1996. V. 21. № 21. P. 1744–1746.
18. Lu Z.G, Lavigne A., Lin P., Grover C.P. A erbium/ytterbium co-doped double-cladding fibre amplifier with 36.4 dBm output power // Photonics North. Optical Components and Devices / SPIE. 2004. V. 5577. P. 6. doi: 10.1117/12.565300.
19. Wysocki Paul F., Nykolak Gerald, Scott Shenk D., Kwame Eason. Noise figure limitation in ytterbium-codoped erbium-doped fibre amplifiers pumped at 1064 nm // OFC ‘96 Technical Digest. 1996. P. 32–33.
20. Raja Ahmad, Rochette Martin, Chatigny Stephane. Spectrally wide and high-power Er-Yb fibre amplifier for 40 Gb/s telecommunications applications // Conference on Lasers and Electro-Optics 2010. San Jose, California, United States. 16–21 May 2010. P. CWI2, doi:10.1364/CLEO.2010.CWI2.
21. Yusoffa N.M., Abasa A.F., Hitama S., Mahdia M.A. Dual-stage L-band erbium-doped fibre amplifier with distributed pumping from single pump laser // Optics Communications. 2012. V. 285. № 6. P. 1383–1386.
22. Harun S.W., Abdul-Rashid H.A., Muhd-Yassin S.Z., Abd-Rahman M.K. Dual-stage Er/Yb doped fibre amplifier for gain and noise figure enhancements // IEICE Electronics Express. 2006. V. 3. № 23. P. 517–521.
23. Rajini J. Helina, Selvi S. Tamil. Performance analysis of hybrid optical amplifiers for 64×10 Gbps DWDM system // Asian Journal of Applied Sciences. 2015. V. 8. № 1. P. 46–54.
24. Martini Márcia M. Jardim, Castellani Carlos Eduardo S., Pontes Maria José, Ribeiro Moisés R.N., Kalinowski Hypolito José. Gain profile optimization for Raman+EDFA hybrid amplifiers with recycled pumps for WDM Systems // Journal of Microwaves, Optoelectronics and Electromagnetic Applications. 2010. V. 9. № 2. P. 100–112.
25. Hybrid amplifiers. optiwave inc. http://opt.zju.edu.cn/eclass/attachments/2011-11/01-1321946101-71122.pdf
26. Simranjit Singh. Performance optimization of hybrid optical amplifiers for dense wavelength division multiplexed system // Ph.d. thesis. Thapar: Thapar University, 2014. P. 1–160.
27. Yeh C.-H., Chi S. Utilizations of EDFA and SOA in series for broadband gain amplification // Laser Physics Letters. 2007. V. 4. № 6. P. 433–436.
28. Khadijah Ismail, P. Susthitha Menon, Sahbudin Shaari, Abang Annuar Ehsan, Hesham Bakarman, Norhana Arsad, Bakar Ahmad Ashrif A. Gain performance of cascaded and hybrid semiconductor optical amplifier in CWDM system // J. Nonlinear Optic. Phys. Mat. 2014. V. 23. № 1. P. 1450007-1–11.
29. Umesh Tiwari, Thyagarajan K., Shenoy M.R. Comparative study of EDFA/SOA hybrid amplifier for application in broadband communication // International Conference on Fibre Optics and Photonics. Chennai, India. 9–12 December 2012. P. WPo.32. doi:10.1364/PHOTONICS.2012.WPo.32.
30. Iannone Patrick P., Reichmann Kenneth C. Hybrid SOA-RAs for Fibre-to-the-Home and Metro // National Fibre Optic Engineers Conference. San Diego, California United States, 2008. P. 1–8.
31. Lim E.L., Alam S.U., Richardson D.J. Optimizing the pumping configuration for the power scaling of inband pumped erbium doped fibre amplifiers // Opt. Express. 2012. V. 20. № 13. P. 13886–95. doi: 10.1364/OE.20.013886.
32. SM-Erbium Ytterbium doped fiber. Fibercore inc. Available From: www.fibercore.com/product/sm-erbiumytterbium-doped-fiber.
33. Harun Dimyati K., Muhd-Yassin S.W., Abd-Rahman S.Z., Ahmad M.K.H. Compact and efficient Er-Yb-DOPED fibre amplifier // Journal of Nonlinear Optical Physics and Materials. 2008. V. 17. № 2. P. 193–198.
34. Wang Jing, Zhang Chen Fang, ZhengSiWen, Lin Zhen, Kang ZeXin, Sun Jiang, Wang ChunCan, Jian Shui Sheng. Er3+/Yb3+ co-doped optical fibres: fabrication and characteristics // International Conference on Electronics and Optoelectronics. Dalian, 2011. V. 1. P. 124–126.
35. Zhaoxia Sheng, Qun Han, Jiping Ning. Analysis of pump-wavelength drift induced stability problems of cladding-pumped EYDFAs // Optoelectronics And Advanced Materials – Rapid Communications. 2011. V. 5. № 3. P. 201–203.
36. Govind P. Agrawal. Nonlinear fiber optics. USA, San Diego: Academic Press. P. 306–307.
37. Simranjit Singha, Rajinder Singh Kaler. Review on recent developments in hybrid optical amplifier for dense wavelength division multiplexed system // Optical Engineering. 2015. V. 54. № 10. P. 100901–11.