ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

Analysis on the impact of the parabolic index profile of the core of a highly nonlinear fiber

For Russian citation (Opticheskii Zhurnal):

S. Selvendran, A. Sivanantharaja Analysis on the impact of the parabolic index profile of the core of a highly nonlinear fiber (Анализ влияния параболического профиля показателя преломления сердцевины на характеристики оптических волокон с высокой нелинейностью) [на англ. яз.] // Оптический журнал. 2016. Т. 83. № 6. С. 75–82.

 

S. Selvendran, A. Sivanantharaja Analysis on the impact of the parabolic index profile of the core of a highly nonlinear fiber (Анализ влияния параболического профиля показателя преломления сердцевины на характеристики оптических волокон с высокой нелинейностью) [in English] // Opticheskii Zhurnal. 2016. V. 83. № 6. P. 75–82.

For citation (Journal of Optical Technology):

S. Selvendran and A. Sivanantharaja, "Analysis on the impact of the parabolic index profile of the core of a highly nonlinear fiber," Journal of Optical Technology. 83(6), 385-390 (2016). https://doi.org/10.1364/JOT.83.000385

Abstract:

In this paper we have studied the impact of the parabolic core index profile in highly nonlinear fiber design. Compared to the constant refractive index (RI) value of the core, different values of the parabolic function on the core index yield reasonable dispersion flatness in addition to the increased nonlinearity. A fiber with the parabolic core index exhibits optimum fiber properties such as zero dispersion wavelength (ZDW) of 1.5554 μm, dispersion slope of 0.02545 ps/nm2 km, and dispersion of −0.25 ps/nm km at 1.55 μm. In our analysis the parabolic core index also shows a good nonlinear coefficient of 8.71 W−1 km−1 and restricts the fiber to the fundamental linearly polarized (LP) mode (0,1) operations with a model index of 1.4591112.

Keywords:

dispersion, dispersion slope, mode field diameter, nonlinear coefficient, refractive index profile, parabolic profile, highly nonlinear fiber, phase matching condition

Acknowledgements:

The authors thankfully acknowledge the Department of Science and Technology (DST), New Delhi for their Fund for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions – (FIST) grant through the order No.SR/FST/College-061/2011(C) to procure the OptiWave simulation package.

OCIS codes: 060.2330, 060.2280, 060.2400, 060.4370, 190.4380

References:

1. Zhiyu Chen, Lianshan Yan, Wei Pan, Bin Luo, Anlin Yi, Yinghui Guo, Ju Han Lee. One-to-Nine multicasting of RZ-DPSK based on cascaded Four-Wave Mixing in a highly nonlinear fiber without stimulated brillouin scattering suppression // IEEE Photonics Technology Letters. 2012. V. 24. № 20. P. 1882–1885.
2. Masaaki Hirano, Tetsuya Nakanishi, Toshiaki Okuno, Masashi Onishi. Silica-based highly nonlinear fibers and their application // IEEE Journal of selected topics in quantum electronics. 2009. V. 15. № 1. P. 103–113.
3. Selvendran S., Sivanantharaja A., Kalaiselvi K., Esakkimuthu K. Simultaneous four channel wavelength conversion of 50 Gbps CSRZ-DPSK WDM signals in S and C bands using HNLF without additional pump signals // Optical and Quantum Electronic. 2013. V. 45. № 2. P. 135–146.
4. Farah Diana Mahad, Abu Sahmah Mohd, Supa’at Sevia M. Idrus, David Forsyth // Analyses of semiconductor optical amplifier (SOA) four-wave mixing (FWM) for future all-optical wavelength conversion // Optik – International Journal for Light and Electron Optics. 2013. V. 124. № 1. P. 1–3.
5. Govind P. Agrawal. Nonlinear fiber optics. 4th Edition. United States of America: Academic Press, 2007. P. 51–53.
6. Dudley J.M., Taylor J.R. Supercontinuum generation in optical fibers. London: Cambridge University Press, 2010. 167 p.
7. Shu Namiki, Takayuki Kurosu, Ken Tanizawa, Stephane Petit, Mingyi Gao, Junya Kurumida. Controlling optical signals through parametric processes // IEEE Journal of selected topics in quantum electronics. 2012. V. 18. № 2. P. 717–725.
8. Shizhuo Yin, Kun-Wook Chung, Hongyu Liu, Paul Kurtz, Karl Reichard. New design for non-zero dispersion-shifted fiber (NZ-DSF) with a large effective area over 100 μm2 and low bending and splice loss // Optics Communications. 2000. V. 177. № 1–6. P. 225–232.
9. Wandel Marie, Kristensen Poul. Fiber designs for high figure of merit and high slope dispersion compensating fibers // J. Opt. Fiber. Commun. 2006. V. 3. № 1. P. 25–60.
10. Ming-Jun Li, Shenping Li, Daniel A. Nolan. Silica glass based nonlinear optical fibers // ICO20: Optical Communication. Proc. of SPIE. 2006. V. 6025. P. 602503. doi:10.1117/12.666983.

11. Ramachandran S., Ghalmi S., Nicholson J.W., Yan M.F., Wisk P., Monberg E., Dimarcello F.V. Anomalous dispersion in a solid, silica-based fiber // Optics Letters. 2006. V. 31. № 17. P. 2532–2534.
12. Okuno T., Hirano M., Nakanishi T., Onishi M. Highly-nonlinear optical fibers and their applications // SEI. Tech. Rev. 2006. № 62. P. 34–40.
13. Camerlingo Angela, Xian Feng, Poletti Francesco, Ponzo Giorgio M., Parmigiani Francesca, Horak Peter, Petrovich Marco N., Petropoulos Periklis, Loh Wei H., Richardson David J. Near-zero dispersion, highly nonlinear lead silicate W-type fiber for applications at 1.55 μm // Optics Express. 2010. V. 18. № 15. P. 15747–15756.
14. Feng X., Shi J., Ponzo G.M., Poletti F., Petrovich M.N., White N.M., Petropoulos P., Ibsen M., Loh W.H., Richardson D.J. Fusion-spliced highly nonlinear soft-glass W-type index profiled fiber with ultra-flattened, low dispersion profile in 1.55 μm telecommunication window // Geneva: ECOC, 2011. P. We.10.P1.05. doi:10.1364/ECOC.2011.We.10.P1.05.
15. Poletti F., Feng X., Ponzo G.M., Petrovich M.N., Loh W.H., Richardson D. All-solid highly nonlinear single mode fibers with a tailored dispersion profile // Optic Express. 2011. V. 19. № 1. P. 66–80.