ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

Design of a dual-core liquid-filled photonic crystal fiber coupler and analysis of its optical characteristics

For Russian citation (Opticheskii Zhurnal):

K. Rohini Priya, A. Sivanantha Raja, D. Shanmuga Sundar Design of a dual-core liquid-filled photonic crystal fiber coupler and analysis of its optical characteristics (Design of a dual-core liquid-filled photonic crystal fiber coupler and analysis of its optical characteristics) [на англ. яз.] // Оптический журнал. 2016. Т. 83. № 9. С. 78–83.

 

K. Rohini Priya, A. Sivanantha Raja, D. Shanmuga Sundar Design of a dual-core liquid-filled photonic crystal fiber coupler and analysis of its optical characteristics (Design of a dual-core liquid-filled photonic crystal fiber coupler and analysis of its optical characteristics) [in English] // Opticheskii Zhurnal. 2016. V. 83. № 9. P. 78–83.

For citation (Journal of Optical Technology):

K. Rohini Priya, A. Sivanantha Raja, and D. Shanmuga Sundar, "Design of a dual-core liquid-filled photonic crystal fiber coupler and analysis of its optical characteristics," Journal of Optical Technology. 83(9), 569-573 (2016). https://doi.org/10.1364/JOT.83.000569

Abstract:

The photonic crystal fiber coupler (PCFC) is one of the peculiar devices that play a major role in the future of optical networks. Dual-core PCFCs have many advantages over the conventional optical couplers such as more flexible design and shorter coupling length. In this paper we propose a silica-based PCFC with a hexagonal lattice structure, and important properties such as dispersion, effective refractive index, propagation characteristics, and coupling length are analyzed in comparison with benzene and chloroform liquid-filled PCFCs. The above properties are investigated under different geometrical parameters such as hole-to-hole spacing and different air hole diameter within a wide range of wavelengths. By proper adjustment of the dual-core PCFCs, the coupling lengths of 0.0006, 0.007, and 0.0008 m are achieved in the silica-, benzene-, and chloroform-filled PCFCs, respectively. Likewise, the dispersion values of −6987, −7055, and −6684  ps/(nm km) and the propagation constants of 10.9, 11.08, and 10.6 (×106)  rad/m are achieved in silica-, benzene-, and chloroform-filled PCFCs, respectively.

OCIS codes: 060.1810, 060.2340

References:

1. Russell P.St.J. Photonic crystal fibers // Science. 2003. V. 299 P. 358–362.
2. Knight J.C., Birks T.A., Russell P.S.J., and Atkin D.M. All-silica, single-mode optical fiber with photonic crystal cladding // Opt. Lett. 1996. V. 21. P. 1547–1549.
3. Joannopoulos J.D., Johnson S.G., Winn J.N., and Meade R.D. Photonic Crystals: Molding the Flow of Light, 2-nd ed. Princeton University Press, February 2008. ISBN: 978-0-691-1246-8.
4. Rajalakshmi G., Sivanantha Raja A., and Shanmuga Sundar D. Design and optimization of two dimensional photonic crystal based optical filter // J. Nonlinear Opt. Phys. & Materials. 2015. V. 24. № 03. Р. 1550027.
5. Narmadhadevi P., Shanmuga Sundar D., and Malathi L. Performance analysis of different micro ring resonators based on optical delay lines // IJCA. 2013. V. 67(13). P. 0975–8887.
6. Geerthana S., Sivanantha Raja A., and Shanmuga Sundar D. Design and optimization photonic crystal fiber with improved optical characteristics // J. Nonlinear Opt. Phys. & Materials. 2015. V. 24. № 04. P. 1550051.
7. Knight J.C., Arriaga J., Birks T.A., Ortigosa-Blanch A., Wadsworth W.J., and Russell P.St.J. anomalous dispersion in photonic crystal fiber // IEEE Photonics Tech. Lett. 2000. V. 12. № 7. P. 807–809.
8. Hansen K.P. Introduction to nonlinear photonic crystal fibers // J. Opt. Fiber Commun. Rep. 2005. V. 2. P. 226–254.
9. Dudley J.M. and Roy Taylor J. Ten years of nonlinear optics in photonic crystal fiber // Nat. Photon. 2009. V. 3. № 2. P. 8590.
10. Lee B.H., Eom J.B., Kim J., Moon D.S., Paek U., and Yang G. Photonic crystal fiber coupler // Opt. Lett. 2002. V. 27. № 10. P. 812–814.

11. Dudley J.M., Genty G., and Coen S. Super continuum generation in photonic crystal fiber // Rev. Mod. Phys. 2006. V. 78. № 4. P. 1135–1184.
12. Raja R.V.J., Porsezian K., and Nithyanandan K. Modulation-instability-induced super continuum generation with saturable nonlinear response // Phys. Rev. A. 2010. V. 82. № 013825. P. 1–6.
13. Saitoh K. and Koshiba M. Imperical relations for simple design of photonic crystal fibers // Opt. Exp. 2005. V. 13. № 1. P. 267–274.
14. Agrawal G.P. Nonlinear Fiber Optics, 3rd ed. New York: Academic Press, 2001.
15. Saitoh K., Koshiba M., Hasegawa T., and Sasaoka E. Chromatic dispersion control in photonic crystal fibers: Application to ultra flattend dispersion // Opt. Exp. 2003. V. 11. P. 843–852.
16. Fu B., Li S.G., Yao Y.Y., Zhang L., and Zhang M.Y. Design of two kinds of dual-core high birefringence and high coupling degree photonic crystal fibers // Opt. Commun. 2010. V. 283. P. 4064–4068.
17. Sandhir K. Singh, Dharmendra K. Singh, and Mahto P. Design and analysis of a 2D-photonic crystal fiber structure with ultra-flattened dispersion and single mode operation over a wide range of wavelength // Int. J. Advanced Networking and Applications. 2010. V. 01. Iss. 05. P. 337–340.
18. Asimakis S., Petropoulos P., Poletti F., Leong J.Y.Y., Moore R.C., Frampton K.E., Feng X., Loh W.H., and Richardson D.J. Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers // Opt. Exp. 2007. V. 15. № 2. P. 596–601.
19. Khan K.R. and Wu T.X. Short pulse propagation in wavelength selective index-guided photonic crystal fiber coupler // IEEE J. Sel. Topics Quant. Electron. 2008. V. 14. № 3. P. 752–757.
20. Zsigri B., Lægsgaard J., and Bjarklev A. A novel photonic crystal fiber design for dispersion compensation // J. Opt. A: Pure and Appl. Opt. 2004. V. 6. № 7. P. 717–720
21. Ni Y., Zhang L., An L., Peng J., and Fan C. Dual-core photonic crystal fiber for dispersion compensation // IEEE Photon. Technol. Lett. 2004. V. 16. № 6. P. 1516–1518.
22. Gerome F., Auguste J.-L., and Blondy J.-M. Design of dispersion-compensating fibers based on a dual-concentric core photonic crystal fiber // Opt. Lett. 2004. V. 29. № 23. P. 2725–2727.