ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 538.9 535.14

Quantum fluctuations in a system of exciton polaritons in a semiconductor microcavity

For Russian citation (Opticheskii Zhurnal):

Демирчян С.С., Худайберганов Т.А., Честнов И.Ю., Алоджанц А.П. Квантовые флуктуации в системе экситонных поляритонов в полупроводниковом микрорезонаторе // Оптический журнал. 2017. Т. 84. № 2. С. 10–18.

 

Demirchyan S.S., Khudayberganov T.A., Chestnov I.Yu., Alodzhants A.P. Quantum fluctuations in a system of exciton polaritons in a semiconductor microcavity [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 2. P. 10–18.

For citation (Journal of Optical Technology):

S. S. Demirchyan, T. A. Khudaĭberganov, I. Yu. Chestnov, and A. P. Alodzhants, "Quantum fluctuations in a system of exciton polaritons in a semiconductor microcavity," Journal of Optical Technology. 84(2), 75-81 (2017). https://doi.org/10.1364/JOT.84.000075

Abstract:

This paper analyzes how quantum fluctuations affect the properties of exciton polaritons in a sample located in a planar semiconductor microcavity. The analysis takes into account the nonlinear interaction between the excitons, even in the presence of a thermal reservoir. Exact solutions are obtained for the generalized Glauber P function in the adiabatic limit. Giant exciton bunching is predicted. It is found that the presence of quantum noise destabilizes a homogeneous solution that belongs to the lower bistability branch.

Keywords:

exciton polaritons, bistability, fluctuation spectrum, P-representations

Acknowledgements:

The research was supported by the President of the Russian Federation (MK-2988.2017.2); Russian Foundation for Basic Research (RFBR) (15-59-30406, 15-52-52001, 16-32-60102, 14-02-97503); Ministry of Education and Science of the Russian Federation (Minobrnauka) (16.1123.2017/PCh).

OCIS codes: 240.5420, 270.2500

References:

1. H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH Verlag GmbH & Co, Weinheim, 2004).
2. N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, and F. Nori, “Quantum biology,” Nat. Phys. 9, 10–18 (2013).
3. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 2008).
4. Kh. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63(20), 2005–2028 (2016).
5. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463–512 (1999).
6. H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82, 1489–1537 (2010).
7. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
8. A. V. Kavokin and G. Malpuech, Thin Films and Nanostructures: Cavity Polaritons (Elsevier, San Diego, 2003).
9. H. Deng, G. Weihs, Ch. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002).
10. D. Pagel, H. Fehske, J. Sperling, and W. Vogel, “Strongly entangled light from planar microcavities,” Phys. Rev. A 86, 052313 (2012).
11. S. S. Demirchyan, I. Yu. Chestnov, A. P. Alodjants, M. M. Glazov, and A. V. Kavokin, “Qubits based on polariton Rabi oscillators,” Phys. Rev. Lett. 112, 196403 (2014).
12. A. P. D. Love, N. Krizhanovskii, D. M. Whittaker, R. Bouchekioua, D. Sanvitto, S. Al Rizeiqi, R. Bradley, M. S. Skolnick, P. R. Eastham, R. André, and L. S. Dang, “Intrinsic decoherence mechanisms in the microcavity polariton condensate,” Phys. Rev. Lett. 101, 067404 (2008).
13. A. V. Kavokin, A. S. Sheremet, I. A. Shelykh, P. G. Lagoudakis, and Yu. G. Rubo, “Exciton-photon correlations in bosonic condensates of exciton polaritons,” Sci. Rep. 5, 12020 (2015).
14. C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells,” Phys. Rev. B 58(12), 7926–7933 (1998).
15. M. Wouters and I. Carusotto, “Parametric oscillation threshold of semiconductor microcavities in the strong coupling regime,” Phys. Rev. B 75(7), 075332 (2007).
16. A. V. Yulin, O. A. Egorov, F. Lederer, and D. V. Skryabin, “Dark polariton solitons in semiconductor microcavities,” Phys. Rev. A 78, 061801 (2008).
17. M. Lax, Fluctuation and Coherence Phenomena in Classical and Quantum Physics (Science Publishers Inc., New York, 1968).
18. H. Haken, Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices (Springer-Verlag, New York, 1993; Mir, Moscow, 1985).
19. H. J. Carmichael and D. F. Walls, “A quantum-mechanical master equation treatment of the dynamical Stark effect,” J. Phys. B: At. Mol. Phys. 9, 1199–1219 (1976).
20. P. D. Drummond and C. W. Gardiner, “Generalised P-representations in quantum optics,” J. Phys. 13, 2353–2368 (1980).
21. S. Chaturvedi, C. W. Gardiner, I. S. Matheson, and D. F. Walls, “Stochastic analysis of a chemical reaction with spatial and temporal structures,” J. Stat. Phys. 17(6), 469–489 (1977).
22. C. W. Gardiner, “Adiabatic elimination in stochastic systems. II. Application to reaction diffusion and hydrodynamic-like systems,” Phys. Rev. A 29, 2814–2822 (1984).
23. P. D. Drummond, K. J. McNeil, and D. F. Walls, “Non-equilibrium transitions in sub/second harmonic generation,” Opt. Acta 28(2), 211–225 (1981).
24. F. Jahnke, C. Gies, M. Asmann, M. Bayer, H. Leymann, A. Foerster, J. Wiersig, C. Schneide, M. Kamp, and S. Hofling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7(11), 1–7 (2016).