ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

Characterization of Mn, Cu, and (Mn, Cu) co-doped ZnS nanoparticles

For Russian citation (Opticheskii Zhurnal):

Selma M. H. Al-Jawad, Mukhlis M. Ismail, Sora Emad Characterization of Mn, Cu, and (Mn, Cu) co-doped ZnS nanoparticles (Определение параметров наночастиц ZnS, легированных Mn, Cu и (Mn, Cu)) [на англ. яз.] // Оптический журнал. 2017. Т. 84. № 7. С. 80–85.

 

Selma M. H. Al-Jawad, Mukhlis M. Ismail, Sora Emad Characterization of Mn, Cu, and (Mn, Cu) co-doped ZnS nanoparticles (Определение параметров наночастиц ZnS, легированных Mn, Cu и (Mn, Cu)) [in English] // Opticheskii Zhurnal. 2017. V. 84. № 7. P. 80–85.

For citation (Journal of Optical Technology):

Selma M. H. Al-Jawad and Mukhlis M. Ismail, "Characterization of Mn, Cu, and (Mn, Cu) co-doped ZnS nanoparticles," Journal of Optical Technology. 84(7), 495-499 (2017). https://doi.org/10.1364/JOT.84.000495

Abstract:

The Mn, Cu and (Mn, Cu) co-doped ZnS nanoparticles were prepared using hydrothermal method at 180 °C. A hexagonal structural of synthesized ZnS nanoparticle were approved using X-ray diffraction. The scanning electron microscopy was confirmed that the morphology and elemental analysis was formed ZnS nanoparticle as a circle shape. The two luminescence peaks appearing in photoluminescence spectrum of the pure ZnS nanoparticles were shown at 379 and 472 nm, which assign to the recombination of the defect sates of ZnS. A third peak also appears on the ZnS doped samples. It was identified about 556 and 580 nm for Cu and Mn doped ZnS respectively which are commonly attributed to the recombination of charge carriers. With the Mn and Cu co-doped of ZnS, the emission peak showed a shift to longer wavelengths.

Keywords:

hydrothermal method, co-doped ZnS nanoparticles, photoluminescence

OCIS codes: 160.6000

References:

1. Borah J.P., Sarma K.C. Optical and optoelectronic properties of ZnS nanostructured thin film // Acta Physica Polonica A. 2008. V. 114. № 4. P. 713–719.
2. Zhu Y.C., Bondo Y., Xue D.F. Spontaneous growth and luminescence of zinc sulfide nanobelts // Appl. Phys. Lett. 2003. V. 82. № 11 P. 1769–1771.
3. Peng W.Q., Cong G.W., Qu S.C., Wang Z.G. Synthesis and photoluminescence of ZnS:Cu nanoparticles // Opt. Mater. 2006. V. 29. P. 313–317.
4. Huang J., Yang Y., Xue S., Yang B., Liu S., Shen J. Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric networks // Appl. Phys. Lett. 1997. V. 70. № 18. P. 2335–2337.
5. Shionoya S., Yen W.M. Phosphor Handbook. CRC Press, Boca Raton, FL, 1999.
6. Chen Z., Li X.X., Du G., Yu Q., Ding S., Liu Y. Effect of annealing and surfactant on photoluminescence of ZnS:O2-nanoparticles // Intern. J. Mater. Res. 2015. V. 106. № 8. P. 877–885.
7. Mo M., Yu J.C., Zhang L., and Li S.-K.A. Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres // Adv. Mater. 2005. V. 17. P. 756–760.
8. Kripal R., Gupta A.K., Mishra S.K., Srivastava R.K., Pandey A.C., Prakash S.G. Photoluminescence and photoconductivity of ZnS:Mn2+ nanoparticles synthesized via co-precipitation method // Spectrochimica Acta Part A. 2010. V. 76. № 6. P. 523–530.
9. Cullity B.D. and Graham C.D. Introduction to magnetic materials / Second Edition. Hoboken, New Jersey: John Wiley & Sons, Inc., 2009.

10. Bhargava R.N. and Gallagher D. Optical properties of manganese-doped nanocrystals of ZnS // Phys. Rev. Lett. 1994. V. 72. № 3. P. 416–419.
11. Jayanthi K., Chawla S., Chander H., and Haranath D. Structural, optical and photoluminescence properties of ZnS:Cu nanoparticle thin films as a function of dopant concentration and quantum confinement effect // Cryst. Res. Technol. 2007. V. 42. № 10. P. 976–982.
12. Bol A.A., Ferwerda J., Bergwerff J.A., and Meijerink A. Luminescence of nanocrystalline ZnS:Cu2+ // J. Lumin. 2002. V. 99. P. 325–334.
13. Khosravi A.A., Kundu M., Jatwa L., and Deshpande S.K., Bhagwat U.A., Sastry M., Kulkarni S.K. Green luminescence from copper doped zinc sulphide quantum particles // Appl. Phys. Lett. 1995. V. 67. № 18. P. 2702–2704.
14. Leslie T.C. and Allen J.W. Thermal quenching of photoluminescence in ZnS:Mn and ZnSe:Mn // Phys. Stat. Sol. A. 1981. V. 65. P. 545–551.
15. Soo Y.L., Ming Z.H., Huang S.W., and Kao Y.H. Local structures around Mn luminescent centers in Mn-doped nanocrystals of ZnS // Phys. Rev. B. 1994. V. 50. № 11. P. 7602–7607.
16. Yu X., Yang L., Yang S., and Zhou P. Morphological control and photoluminescence of ZnS:Mn microstructure // J. Mater. Res. 2007. V. 22. № 5. P. 1207–1213.
17. Bui H.V., Nguyen H.N., Hoang N.N., Truong T.T., and Pham V.B. Optical and magnetic properties of Mn-doped ZnS nanoparticles synthesized by a hydrothermal method // IEEE Trans. Magnetics. 2014. V. 50. № 6. P. 2400504.