ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-01-50-55

УДК: 535.1, 535.3, 535.8

Sucrose concentration sensor based on MoS2 nano-film and Au nanowires array enhanced surface plasmon resonance with graphene oxide nanosheet

For Russian citation (Opticheskii Zhurnal):

Zh. Li, X. Wu, K. Tong, X. Jia, W. Li, Q. Li Sucrose concentration sensor based on MoS2 nano-film and Au nanowires array enhanced surface plasmon resonance with graphene oxide nanosheet (Датчик концентрации сахарозы, использующий нанослой графена и улучшенный поверхностный плазмонный резонанс в матрице золотых нанопроволок, контактирующих с нанопленкой MoS2) [на англ. яз.] // Оптический журнал. 2020. Т. 87. № 1. С. 50–55. http://doi.org/10.17586/1023-5086-2020-87-01-50-55

Zh. Li, X. Wu, K. Tong, X. Jia, W. Li, Q. Li Sucrose concentration sensor based on MoS2 nano-film and Au nanowires array enhanced surface plasmon resonance with graphene oxide nanosheet (Датчик концентрации сахарозы, использующий нанослой графена и улучшенный поверхностный плазмонный резонанс в матрице золотых нанопроволок, контактирующих с нанопленкой MoS2) [in English] // Opticheskii Zhurnal. 2020. V. 87. № 1. P. 50–55. http://doi.org/10.17586/1023-5086-2020-87-01-50-55

For citation (Journal of Optical Technology):

Zhiquan Li, Xiaogang Wu, Kai Tong, Xiaopeng Jia, Wenchao Li, and Qiang Li, "Sucrose concentration sensor based on MoS2 nanofilm and Au nanowire array enhanced surface plasmon resonance with a graphene oxide nanosheet," Journal of Optical Technology. 87(1), 40-44 (2020). https://doi.org/10.1364/JOT.87.000040

Abstract:

A method of sucrose concentration detection based on surface plasmon resonance is proposed. Thus, a novel prism coupling structure is designed for sucrose concentration sensor utilizing the unique feature of graphene oxide to sucrose in water, and the MoS2-graphene oxide hybrid nano-film is chosen to enhance surface plasmon resonance based on Au nanoparticles. The thickness of each layer for the structure designed are analyzed to get the optimal value by finite element method, so that the sensitivity of sucrose concentration sensor is able to be improved greatly. The optimal thickness of each layer is given, for which the sensitivity of surface plasmon resonance sucrose concentration sensor can reach as high as 0.16°/% conc. within the detection range of sucrose concentration, 0–70% conc. The relationship between sucrose concentration and surface plasmon resonance angle are obtained within the detection range of sucrose concentration.

Keywords:

surface plasmon resonance, sensitivity, graphene oxide, Au nanowires, sucrose concentration, finite element method

OCIS codes: 130.6010, 230.0230, 240.6680, 260.0260

References:

1. Devanarayanan V.P., Manjuladevi V., Gupta R.K. Surface plasmon resonance sensor based on a new opto-mechanical scanning mechanism // Sensors and Actuators B: Chemical. 2016. V. 227. P. 643–648.
2. Vachali P.P., Li B., Bartschi A., Bernstein P.S. Surface plasmon resonance (SPR)-based biosensor technology for the quantitative characterization of protein–carotenoid interactions // Archives of Biochemistry and Biophysics. 2015. V. 572. P. 66–72.
3. Sankiewicz A., Laudanski P., Romanowicz L., Hermanowicz A., Roszkowska-Jakimiec W., Debek W., Gorodkiewicz E. Development of surface plasmon resonance imaging biosensors for detection of ubiquitin carboxyl-terminal hydrolase L1 // Analytical Biochem. 2015. V. 469. P. 4–11.
4. Turton A., Bhattacharyya D., Wood D. Measurement science and technology liquid density analysis of sucrose and alcoholic beverages using polyimide guided love-mode acoustic wave sensors // Meas. Sci. and Technol. 2006. V. 17. P. 257–263.
5. Fujiwara E., Ono E., and Suzuki C.K. Application of an optical fiber sensor on the determination of sucrose and ethanol concentrations in process streams and effluents of sugarcane bioethanol industry // IEEE Sensors J. 2012. V. 9. P. 2839–2843.
6. Barnes W.L., Dereux Al., Ebbesen T.W. Surface plasmon subwavelength optics // Nature. 2003. V. 424. P. 824–830.
7. Maharana P.K., Bharadwaj S., Jha R. Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism // J. Appl. Phys. 2013. V. 114. P. 014304.
8. Wijaya E., Lenaerts C., Maricot S., Hastanin J., Habraken S., Vilcot J.P., Boukherroub R., Szunerits S. Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies // Current Opinion in Solid State and Materials Sci. 2011. V. 15. P. 208–224.
9. Abbas A., Linman M.J., Cheng Q. Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors // Sensors and Actuators B. 2011. V. 156(1). P. 169–175.
10. Homola J., Yee S.S., Gauglitz G. Surface plasmon resonance sensors: Review // Sens. Actuator B. 1999. V. 54(1–2). P. 3–15.
11. Nair R.R., Wu H., Jayaram P.N., Grigorieva I.V., Geim K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes // Science. 2012. V. 335(6067). P. 442–444.
12. Joshi R.K., Carbone P., Wang F.C., Kravets V.G., Su Y., Grigorieva I.V., Wu H., Geim K., Nair R.R. Precise and ultrafast molecular sieving through graphene oxide membranes // Science. 2014. V. 343. P. 752–754.
13. Cittadini M., Bersani M., Perrozzi F., Ottaviano L., Wlodarski W., Martucci A. Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor // CARBON. 2014. V. 69. P. 452–459.
14. Mikheev G.M., Zonov R.G., Obraztsov A.N., & Svirk Y.P. Sensitivity of fast-response nanographite photodetector at high temperature // Optical Sensors. 2009. V. 7356. P. 73560X.
15. Zhang H., Sun Y., Gao S., Zhang J., Zhang H., Song D. Novel graphene oxide based surface plasmon resonance biosensor for immunoassay // Small. 2013. V. 9. P. 2537–2540.
16. Bin Mat Yunus W.M., Bin Abdul Rahman A. Refractive index of solutions at high concentrations // Appl. Opt. 1988. V. 27(16). P. 3341–3343.
17. Sosnova M.V., Dmitruk N.L., Korovin A.V., Mamykin S.V., Mynko V.I., Lytvyn O.S. Local plasmon excitations in onedimensional array of metal nanowires for sensor applications // Appl. Phys. B. 2010. V. 99(3). P. 493–497.

18. Simsek E. On the surface plasmon resonance modes of metal nanoparticle chains and arrays // Plasmonics. 2009. V. 4(3). P. 223–230.
19. Schmidt M.A., Sempere L.P., Tyagi H.K., Poulton C.G., Russell P.S.J. Waveguiding and plasmon resonances in twodimensional photonic lattices of gold and silver nanowires // Phys. Rev. B. 2008. V. 77(3). P. 033417.
20. Yang M.R., Chu S.Y., Chang R.C. Synthesis and study of the SnO2 nanowires growth // Sensors and Actuators B: Chemical. 2007. V. 122(1). P. 269–273.
21. Oh W.K., Yoon H., Jang J. Characterization of surface modified carbon nanoparticles by low temperature plasma treatment // Diamond and Related Materials. 2009. V. 18(10). P. 1316–1320.
22. Byun K.M., Shuler M.L., Kim S.J., Yoon S.J., Kim D. Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires // J. Lightwave Technol. 2008. V. 26(11). P. 1472–1478.
23. Yao H., Duan J., Mo D., Günel Yu.H., Chen Y., Liu J., Schäpers T. Optical and electrical properties of gold nanowires synthesized by electrochemical deposition // J. Appl. Phys. 2011. V. 110(9). P. 094301.
24. Kim J.A., Hwang T., Dugasani S.R., Amin R., Kulkarni A., Park S.H., Kim T. Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications // Sens. Actuators B: Chem. 2013. V. 187. P. 426–433.
25. Mak K.F., Lee C., Hone J., Shan J., Heinz T.F. Atomically thin MoS2: A new direct-gap semiconductor // Phys. Rev. Lett. 2010. V. 105. P. 136805.
26. Ouyang Q., Zeng S., Dinh X.Q., Coquet P., Yong K.T. Sensitivity enhancement of MoS2 nanosheet based surface plasmon
resonance biosensor // Proc. Engineering. 2016. V. 140. P. 134–139.
27. Roy K., Padmanabhan M., Goswami S., Sai T.P., Ramalingam G., Raghavan S., Ghosh A. Graphene-MoS2 hybrid structures
for multifunctional photoresponsive memory devices // Nat. Nanotechnol. 2013. V. 8. P. 826–830.
28. Lee K.S., Son J.M., Jeong D.Y., Lee T.S., Kim W.M. Resolution enhancement in surface plasmon resonance sensor based
on waveguide coupled mode by combining a bimetallic approach // Sensors. 2010. V. 10(12). P. 11390–11399.
29. Gupta B.D., Sharma A.K. Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor:
A theoretical study // Sens. Actuators B: Chem. 2005. V. 107(1). P. 40–46.
30. Castellanos-Gomez A., Agraït N., Rubio-Bollinger G. Optical identification of atomically thin dichalcogenide crystals //
Appl. Phys. Lett. 2010. V. 96(21). P. 213116.
31. Meshginqalam B., Ahmadi M.T., Ismail R., Sabatyan A. Graphene/graphene oxide-based ultrasensitive surface plasmon
resonance biosensor // Plasmonics. 2017. V. 12(6). P. 1991–1997.
32. Verma A., Prakash A., Tripathi R. Sensitivity enhancement of surface plasmon resonance biosensor using graphene and
air gap // Opt. Commun. 2015. V. 357. P. 106–112.
33. Choi M., Kim N.H., Eom S., Kim T.W., Byun K.M., Park H.H. Fabrication and characterization of gold nanocrown arrays
on a gold film for a high-sensitivity surface plasmon resonance biosensor // Thin Solid Films. 2015. V. 587. P. 43–46.
34. Maurya J.B., Prajapati Y.K., Singh V., Saini J.P. Sensitivity enhancement of surface plasmon resonance sensor based
on graphene-MoS2 hybrid structure with TiO2-SiO2 composite layer // Appl. Phys. A. 2015. V. 121. P. 525–533.