ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-11-16-23

УДК: 535.36, 535.015

Issues of wavefront tilt measurement

For Russian citation (Opticheskii Zhurnal):

Больбасова Л.А., Лукин В.П. Вопросы измерения наклона волнового фронта // Оптический журнал. 2021. Т. 88. № 11. С. 16–23. http://doi.org/10.17586/1023-5086-2021-88-11-16-23

 

Bolbasova L.A., Lukin V.P. Issues of wavefront tilt measurement [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 11. P. 16–23. http://doi.org/10.17586/1023-5086-2021-88-11-16-23

For citation (Journal of Optical Technology):

L. A. Bol’basova and V. P. Lukin, "Issues of wavefront tilt measurement," Journal of Optical Technology. 88(11), 625-629 (2021). https://doi.org/10.1364/JOT.88.000625

Abstract:

Different realizations of methods for estimation of random tilts of wavefront are considered. Dispersions of tilt estimates are demonstrated to practically coincide for different methods of their determination. Possibilities of measuring the Fried parameter for adaptive optics applications are determined. The parameters of a Shack–Hartmann wavefront sensor are analytically calculated for operation under different conditions in terms of turbulence level and for radiation at different wavelengths.

Keywords:

atmosphere, turbulence, Fried parameter, phase front tilt, microraster

Acknowledgements:

This study was conducted as part of a state assignment of the Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences and was partially supported by the State Corporation “Rosatom” (project EOTP-LT-386) as part of the scientific program of the National Physics and Mathematics Center.

OCIS codes: 010.0010, 010.1330, 220.0220

References:

1. V. I. Tatarskii, “Adaptive systems and coherence. I,” Radiophys. Quantum Electron. 24(7), 590–597 (1981) [Izv. Vyssh. Uchebn. Zaved., Radiofiz. 24(7) 861–871 (1981)].
2. V. I. Tatarskii, “Adaptive systems and coherence. II,” Radiophys. Quantum Electron. 24(7), 598–607 (1981) [Izv. Vyssh. Uchebn. Zaved., Radiofiz. 24(7) 872–883 (1981)].
3. A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in a Turbulent Atmosphere (Nauka, Moscow, 1976).
4. A. S. Gurvich and M. A. Kallistratova, “Experimental study of the fluctuations in angle of incidence of a light beam under conditions of strong intensity fluctuations,” Radiophys. Quantum Electron. 11(1), 37–40 (1968) [Izv. Vyssh. Uchebn. Zaved., Radiofiz. 11(1), 66–71 (1968)].
5. V. L. Mironov and V. V. Nosov, “Random image displacements at a telescope focus located in a turbulent atmosphere,” Radiophys. Quantum Electron. 20(10), 1054–1056 (1977) [Izv. Vyssh. Uchebn. Zaved., Radiofiz. 20(10), 1530–1533 (1977)].
6. D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55(1), 57–67 (1970) [Tr. Inst. Inzh. Elektron. Radiotekh. 55(1), 57–69 (1970)].
7. E. I. Gel’fer, A. I. Kon, and A. M. Cheremukhin, “Correlation of the shift of the center of gravity of a focused light beam in a turbulent atmosphere,” Radiophys. Quantum Electron. 16(2), 182–187 (1973) [Izv. Vyssh. Uchebn. Zaved., Radiofiz. 16(2), 245–253 (1973)].
8. A. I. Kon, V. L. Mironov, and V. V. Nosov, “Fluctuations of the centers of gravity of light beams in a turbulent atmosphere,” Radiophys. Quantum Electron. 17(10), 1147–1155 (1974) [Izv. Vyssh. Uchebn. Zaved., Radiofiz. 17(10), 1501–1511 (1974)].
9. V. P. Lukin, Atmospheric Adaptive Optics (Nauka, Novosibirsk, 1986).
10. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66(3), 207–211 (1976).
11. V. P. Lukin, “Monitoring of random angular displacements of optical beams,” in Proceedings of 5th All-Soviet Symposium on Laser Radiation Propagation in the Atmosphere (1979), pp. 33–36.
12. O. N. Emaleev and V. P. Lukin, “Correction of angular displacements of optical beams,” Sov. J. Quantum Electron. 12(11), 1470–1474 (1982) [Kvant. Elektron. 9(11), 2264–2271 (1982)].
13. S. M. Slobodyan, V. N. Galakhov, and V. M. Sazanovich, “Instrument for measurement of angular fluctuations of optical beams,” Prib. Tekh. Eksp. 27(9), 192–194 (1980).
14. Yu. A. Kravtsov and A. I. Saichev, “Effects of double passage of waves in randomly inhomogeneous media,” Sov. Phys. Usp. 25(7), 494–508 (1982) [Usp. Fiz. Nauk 137(3), 501–527 (1982)].
15. D. A. LeMaster, R. C. Hardie, S. Gladysz, M. D. Howard, M. A. Rucci, M. E. Trippel, J. D. Power, and B. K. Karch, “Differential tilt variance effects of turbulence in imagery: comparing simulation with theory,” Proc. SPIE 9846, 984606 (2016).
16. S. Gladysz, M. Segel, C. Eisele, R. Barros, and E. Sucher, “Estimation of turbulence strength, anisotropy, outer scale and spectral slope from an LED array,” Proc. SPIE 9614, 961402 (2015).
17. J. D. Power, D. A. LeMaster, D. R. Droege, S. Gladysz, and S. Bose-Pillai, “Simulation of anisoplanatic imaging through optical turbulence using numerical wave propagation with new validation analysis,” Opt. Eng. 56(7), 071502 (2017).
18. S. Gladysz, “Absolute and differential G-tilt in turbulence: theory and applications,” Proc. SPIE 10002, 100020F (2016).
19. S. Gladysz, G. Filimonov, and V. Kolosov, “Validation of tilt anisoplanatism models through simulation,” in Imaging and Applied Optics (2018), paper PW3H.2.
20. A. Tokovinin, “From differential image motion to seeing,” Publ. Astron. Soc. Pac. 114, 1156–1166 (2002).
21. M. Sarazin and F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).
22. L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, V. P. Lukin, and L. N. Lavrinova, “Differential optical meter for atmospheric turbulence parameters,” Opt. Atmos. Okeana 11(11), 1219–1223 (1998).
23. L. A. Bolbasova, A. N. Gritsuta, E. A. Kopylov, V. V. Lavrinov, V. P. Lukin, A. A. Selin, and E. L. Soin, “Atmospheric turbulence meter based on a Shack–Hartmann wavefront sensor,” J. Opt. Technol. 86(7), 426–430 (2019) [Opt. Zh. 86(7), 42–47 (2019)].
24. V. P. Lukin and V. V. Nosov, “Measurement of an image jitter of an extended incoherent radiation source,” Quantum Electron. 47(6), 580–588 (2017).
25. State Standard GOST R ISO 15367-2-2021 (2013).
26. V. P. Lukin, N. N. Botygina, O. N. Emaleev, and V. V. Lavrinov, “Peculiarities of adaptive phase correction of optical wave distortions under conditions of ‘strong’ intensity fluctuations,” Quantum Electron. 50(9), 866–875 (2020).