ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-11-32-38

УДК: 531.742, 62.791

Digital optical measurement system with multielement marks

For Russian citation (Opticheskii Zhurnal):

Королев А.Н., Лукин А.Я., Филатов Ю.В., Бохман Е.Д., Венедиктов В.Ю. Оптико-цифровая измерительная система с многоэлементной маркой // Оптический журнал. 2022. Т. 89. № 11. С. 32–38. http://doi.org/10.17586/1023-5086-2022-89-11-32-38

 

Korolev A.N., Lukin A.Ya., Filatov Yu.V., Bokhman E.D., Venediktov V.Yu. Digital optical measurement system with multielement marks [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 11. P. 32–38. http://doi.org/10.17586/1023-5086-2022-89-11-32-38

For citation (Journal of Optical Technology):

A. N. Korolev, A. Ya. Lukin, Yu. V. Filatov, E. D. Bokhman, and V. Yu. Venediktov, "Digital optical measurement system with multielement marks," Journal of Optical Technology. 89(11), 661-665 (2022). https://doi.org/10.1364/JOT.89.000661

Abstract:

Subject of study. The possibility of utilizing array elements in angular metrology was investigated. The main focus of the study was to consider two-dimensional multielement marks of various types utilized in a photoelectric autocollimator with a photodetector array. Aim of study. The study aimed to identify the shape of two-dimensional multielement marks that enable the minimization of errors in determining their centers. Method. The study mainly focused on the results of the development of autocollimators with multielement marks in the form of a circle or set of concentric rings. An algorithm for determining the coordinate of the mark image based on the calculation of the geometric center of the image was proposed and implemented. The algorithm for calculating the coordinate of a mark image involves obtaining the interpolation polynomial for all gradients of the mark edge brightness. Main results. Errors in calculating the coordinate of the mark center based on the geometric center algorithm were obtained via simulations for different diameters of marks, both for the marks in the form of a circle and a set of rings. The optimum sizes of the marks of both configurations were estimated. An autocollimator was calibrated using both types of marks and a rotation table with an angle sensor. Autocollimator calibration using a multielement ring mark and photodetector matrix with a pixel size of 3.45 µm demonstrated an error in the range of ±0.01 in the measurement range of ±600. Practical significance. Application of the proposed configurations of multielement marks enables a significant reduction in the range of error of photoelectric autocollimators.

Keywords:

angular measurements, autocollimator, multi-element mark, matrix photo-receiver

Acknowledgements:

The research was supported by the grant of RSF No. 20-19-00412.

OCIS codes: 120.0120, 230.0230

References:

1. E. P. Krivtsov, K. V. Chekirda, and A. A. Yankovskii, “Contemporary state of primary standards in the fields of measurements of geometric, mechanical, and related quantities,” Meas. Tech. 60, 1193–1198 (2018) [Izmer. Tekh. (12), 23–27 (2017)].
2. K. V. Chekirda, V. L. Shur, M. A. Kos’mina, G. I. Leibengardt, and A. Ya. Lukin, “Measurement of angles of polyhedral prisms on the state primary standard GET 22-2014 for a flat angle unit,” Meas. Tech. 60, 226–234 (2017) [Izmer. Tekh. (3), 19–24 (2017)].
3. R. Probst and R. Wittekopf, “Angle calibration on precision polygons,” Final Report of the EUROMET Project #371 PTBF-43 (Physikalisch-Technische Bundesanstalt, Braunschweig, 2001).
4. R. D. Geckeler, A. Just, V. Vasilev, E. Prieto, F. Dvorácek, S. Zelenika, J. Przybylska, and A. Lassila, “Angle comparison using an autocollimator,” Metrologia 55(1A), 04001 (2018).
5. M. P. Kolosov, V. I. Fedoseev, and A. Ya. Gebgart, “Comparative evaluation of three modern turning-angle sensors,” J. Opt. Technol. 84(11), 743–747 (2017) [Opt. Zh. 84(11), 34–38 (2017)].
6. I. L. Lovchy, “Modeling a broad-band single-coordinate autocollimator with an extended mark and a detector in the form of a linear-array camera,” J. Opt. Technol. 88(11), 654–660 (2021) [Opt. Zh. 88(11), 56–65 (2021)].
7. Y. Gao, X. Wang, C. Hu, Z. Huang, and D. Zhan, “Highly precise micro torsion angle detection by fringe array,” Chin. Opt. Lett. 12(8), 080401 (2014).
8. A. N. Korolev and A. I. Gartsuev, “Precision of measurement of the coordinates of an image on a CCD matrix,” Meas. Tech. 47, 449–453 (2004) [Izmer. Tekh. (5), 20–22 (2004)].
9. A. N. Korolev and A. I. Gartsuev, “X-Y digital autocollimator with 0.001’’ resolution,” Meas. Tech. 47, 1178–1183 (2004).
10. A. N. Korolev, A. I. Gartsuev, G. S. Polishchuk, and V. P. Tregub, “A digital autocollimator,” J. Opt. Technol. 76(10), 624–628 (2009) [Opt. Zh. 76(10), 42–47 (2009)].
11. T. A. Andreeva, E. D. Bokhman, V. Yu. Venediktov, S. V. Gordeev, A. N. Korolev, M. A. Kos’mina, A. Ya. Lukin, and V. L. Shur, “Estimation of metrological characteristics of a high-precision digital autocollimator using an angle encoder,” J. Opt. Technol. 85(7), 406–409 (2018) [Opt. Zh. 85(7), 39–43 (2018)].
12. A. N. Korolev, A. I. Gartsuev, G. S. Polishchuk, and V. P. Tregub, “Metrological studies and the choice of the shape of an optical mark in digital measuring systems,” J. Opt. Technol. 77(6), 370–372 (2010) [Opt. Zh. 77(6), 25–27 (2010)].
13. Inertech Ltd., http://inertech-ltd.com/.
14. A. N. Korolev, A. Ya. Lukin, and G. S. Polishchuk, “Use of information redundancy in optical digital measurement systems with 2D sensor,” Meas. Tech. 60, 242–247 (2017) [Izmer. Tekh. (3), 29–33 (2017)].