ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-12-54-64

УДК: 531.742, 62.791

Matrix technology of linear–angular measurements

For Russian citation (Opticheskii Zhurnal):

Королев А.Н., Лукин А.Я., Филатов Ю.В., Венедиктов В.Ю. Матричная технология линейно-угловых измерений // Оптический журнал. 2022. Т. 89. № 12.
С. 54–64. http://doi.org/10.17586/1023-5086-2022-89-12-54-64

 

Korolev A.N., Lukin A.Ya., Filatov Yu.V., Venediktov V.Yu. Matrix technology of linear–angular measurements [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 12. P. 54–64. http://doi.org/10.17586/1023-5086-2022-89-12-54-64

For citation (Journal of Optical Technology):

A. N. Korolev, A. Ya. Lukin, Y. V. Filatov, and V. Yu. Venediktov, "Matrix technology of linear–angular measurements," Journal of Optical Technology. 89(12), 733-739 (2022). https://doi.org/10.1364/JOT.89.000733

Abstract:

Subject of study. An important technological aspect of fabricating microelectronic elements is the design of high-precision methods for measuring linear and angular displacements. This study proposed a new technique for linear–angular measurements based on using a multi-element mark and obtaining measurement information about the angular and linear shift based on a set of measurements for all elements of the mark image. Method. The image of an optical mark, i.e., an ordered set of simple elements created using high-precision photolithography technology, was recorded using a photodetector matrix of a digital camera used as a metric space for measuring the coordinates of the mark image elements with their subsequent processing. Main results. The main aspects of the proposed measurement technique and the estimation of measurement errors are presented in this study. The results of simulating the measurement process of both linear and angular displacements were considered. The processing of the mark image and a set of computational procedures enabled the determination of both linear and angular displacements of the mark image with high accuracy (linear and angular displacements at the level of a few nanometers and hundredths of an arc second or less, respectively). The main directions for developing the proposed technique of matrix measurements were formulated. Among them, using digital liquid crystal displays to form a measuring mark and developing sensors using a shadow patterns (Fraunhofer diffraction) image of the mark are of particular interest. Practical significance. The proposed techniques for measuring linear and angular displacements can be successfully used to develop high-precision compact length and angle meters, linear–angle sensors, and technological modules for microelectronics in photomask fabrication.

Keywords:

two-dimensional scale, angular measurements, linear measurements, matrix photo-receiver, mark, mark image

Acknowledgements:

The authors are grateful for the support within RSF grant No. 20-19-000412.

OCIS codes: 120.0120, 230.0230

References:

1. Pisani M., Yacoot, A., Balling P., Bancone N., Birlikseven C., Çelik M., Flügge J., Weichert C. Comparison of the performance of the next generation of optical interferometers // Metrologia. 2012. V. 49. № 4. P. 455–467.
2. Bridges A., Yacoot A., Kissinger T., Humphreys D.A., Tatam R.P. Correction of periodic displacement nonlinearities by two-wavelength interferometry // Measurement Science and Technology. 2021. V. 32. № 12. P. 125202.
3. Peggs G.N., Yacoot A. A review of recent work in sub-nanometre displacement measurement using optical and X-ray interferometer // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2002. V. 360. № 1794. P. 953–968.
4. Wang X., Su J., Yang J., Miao L., Huang T. Investigation of heterodyne interferometer technique for dynamic angle measurement: Error analysis and performance evaluation // Measurement Science and Technology. 2021. V. 32. № 10. P. 105016.
5. Kang H.J., Chun B.J., Jang Y.-S., Kim Y.-J., Kim S.-W. Real-time compensation of the refractive index of air in distance measurement // Optics Express. 2015. V. 23. № 20. P. 26377–26385.
6. Meiners-Hagen K., Abou-Zeid A. Refractive index determination in length measurement by two-colour interferometry // Measurement Science and Technology. 2008. V. 19. № 8. art. no. 084004.

7. Wu H., Zhang F., Liu T., Li J., Qu X. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry // Optics Express. 2016. V. 24. № 21. P. 24361–24376.
8. Wu C.-M., Lawall J., Deslattes R.D. Heterodyne interferometer with subatomic periodic nonlinearity // Applied Optics. 1999. V. 38. № 19. P. 4089–4094.
9. Fu H., Wang Y., Hu P., Tan J., Fan Z. Nonlinear errors resulting from ghost reflection and its coupling with optical mixing in heterodyne laser interferometers // Sensors (Switzerland). 2018. V. 18. № 3. Art. No. 758.
10. Weichert C., Köchert P., Köning R., Flügge J., Andreas B., Kuetgens U., Yacoot A. A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm // Measurement Science and Technology. 2012. V. 23. № 9. Art. no. 094005.
11. Wentao Zhang, Wang Yulin, Hao Du, Qilin Zeng, Xianming Xiong. High-precision displacement measurement model for the grating interferometer system // Optical Engineering. 2020. V. 59. № 4. P. 045101.
12. Guan J., Köchert P., Weichert C., Tutsch, R. A high performance one-dimensional homodyne encoder and the proof of principle of a novel two-dimensional homodyne encoder // Precision Engineering. 2013. V. 37. № 4. P. 865–870.
13. Kimura A., Hosono K., Kim W., Shimizu Y., Gao W., Zeng L. A two-degree-of-freedom linear encoder with a mosaic scale grating // International Journal of Nanomanufacturing. 2011. V. 7. № 1. P. 73–91.
14. Zherdev A.Y., Odinokov S.B., Lushnikov D.S., Markin V.V., Gurylev O.A., Shishova M.V. Optical position encoder based on four-section diffraction grating // Proceedings of SPIE. The International Society for Optical Engineering. 2017. 10233. Art. no. 102331I.
15. A. N. Korolev and A. I. Gartsuev, “Precision of measurement of the coordinates of an image on a CCD matrix,” Meas. Tech. 47(5), 449–453 (2004).
16. A. N. Korolev, A. Ya. Lukin, and G. S. Polishchuk, “New concept of angular measurement. Model and experimental studies,” J. Opt. Technol. 79(6), 352–356 (2012) [Opt. Zh. 79(6), 52–58 (2012)].
17. Avanesov G.A., Bessonov R.V., Kurkina A.N., Nikitin A.V., Sazonov V.V. Determining spacecraft motion from four star sensor measurements // Cosmic Research. 2018. V. 56. № 3. P. 232–250.
18. E. D. Bokhman, V. Yu. Venediktov, A. N. Korolev, and A. Ya. Lukin, “Digital goniometer with a two-dimensional scale,” J. Opt. Technol. 85(5), 269–274 (2018) [Opt. Zh. 85(5), 19–25 (2018)].
19. Korolev A.N., Lukin A.Ya., Filatov Y.V., Venediktov V.Y. Reconstruction of the image metric of periodic structures in an opto-digital angle measurement system // Sensors. 2021. V. 21. P. 4411.
20. Pimax [Электронный ресурс] — https://www.e-katalog.ru/PIMAX-8K-X.htm