ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-12-46-60

Image processing technique for measuring of weld dilution and heat-affected zone to model the gas metal arc welding process by neuro-fuzzy

For Russian citation (Opticheskii Zhurnal):

Abolfazl Foorginejad, Sayyed Mohammad Emam, Hossein Jamshidi, Sadegh Ranjbar. Image processing technique for measuring of weld dilution and heat-affected zone to model the gas metal arc welding process by neuro-fuzzy (Технология обработки изображений с помощью нейронной сети при определении качества сварного шва и параметров зоны термического воздействия при газо-дуговой сварке листов металла) [на англ. языке] // Оптический журнал. 2023. Т. 90. № 12. С. 46–60.http://doi.org/10.17586/1023-5086-2023-90-12-46-60

 

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Measuring of weld dilution and heat-affected zone to model the gas metal arc welding is proposed. Purpose of the work. Gas metal arc welding is a critical process for a high-quality permanent joining of metal workpieces. The voltage, wire feed rate, shielding gas flow, nozzle angle, and distance from the workpiece are essential to control parameters for gas metal arc welding. Typically, the quality of a weldment is explained in terms of the geometry of the weld bead, dilution, and heat-affected zone. The degree of dilution plays a vital role in preventing undesirable phases from forming and distributing elements during welding. Additionally, the heat-affected zone affects the mechanical properties and microstructure alterations in the welded metal. Method. The effect of input parameters such as welding velocity, voltage, and wire feeding speed on dilution and the heat-affected zone is investigated in this paper. This is accomplished using an image processing technique. Then, the correlation coefficients of dilution and heat-affected zone were predicted using neuro-fuzzy modeling. Main results. Measuring the weld bead geometries was done using the image processing technique with a mean error percentage of 1.66%. Correlation coefficients for dilution and heat-affected zone were predicted to be 93 and 99, respectively, based on experimental data. Practical significance. The results indicate that the image processing technique is highly capable of measuring the geometry of the weld bead and that the resulting adaptive neuro-fuzzy inference system model is suitable for predicting gas metal arc welding dilution and heat-affected zone.

Keywords:

gas metal arc welding, dilution, heat-affected zone, image processing, neuro-fuzzy modeling

OCIS codes: 150.0150, 150.3045, 120.0120

References:
  1. Hu J., Tsai H. L. Heat and mass transfer in gas metal arc welding // Part I: The arc. International journal of heat and mass transfer. 2007. V. 50. № 5–6. P. 833–846. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.025
  2. Foorginejad A., Azargoman M., Babaiyan V., Mollayi N., Taheri M. Application of the extreme learning machine for modeling the bead geometry in gas metal arc welding process // AUT Journal of Modeling and Simulation. 2019. V. 51. № 2. P. 121–130. https://doi.org/10.22060/miscj.2019.15189.5127
  3. Anzehaee M.M., Haeri M. A new method to control heat and mass transfer to work piece in a GMAW process // Journal of Process Control. 2012. V. 22. № 6. P. 1087–1102. https://doi.org/10.1016/j.jprocont.2012.04.004
  4. Aghakhani M., Ghaderi M.R., Karami A., Derakhshan A.A. Combined effect of TiO2 nanoparticles and input welding parameters on the weld bead penetration in submerged arc welding process using fuzzy logic // The International Journal of Advanced Manufacturing Technology. 2014. V. 70. № 1. P. 63–72. https://doi.org/10.1007/s00170-013-5180-x
  5. Foorginejad A., Azargoman M., Mollayi N., Taheri M. Modeling of weld bead geometry using adaptive neuro-fuzzy inference system (ANFIS) in additive manufacturing // Journal of Applied and Computational Mechanics. 2020. V. 6. № 1. P. 160–170. https://doi.org/10.22055/jacm.2019.29077.1555
  6. Baskoro A.S., Purwanto D.A., Widyianto A. Controlling the width of weld bead from the weld pool using machine vision and artificial neural network // In MATEC Web of Conferences. 2019. V. 269. P. 04003. EDP Sciences. https://doi.org/10.1051/matecconf/201926904003
  7. Xiong J., Zhang G. Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision // Measurement Science and Technology. 2013. V. 24. № 11. P. 115103. https://doi.org/10.1088/0957-0233/24/11/115103
  8. Moradpour M.A., Hesemi S.H., Khalili K. Machine vision implementation for offline measurement of weld bead geometry in API X65 pipeline steel // UPB Sci. Bull. D Mech. Eng. 2014. V. 76. P. 137–148.
  9. Akkas N., Karayel D. Ozkan S.S., Oğur A. Topal B. Modeling and analysis of the weld bead geometry in submerged arc welding by using adaptive neurofuzzy inference system // Mathematical Problems in Engineering. 2013. V. 2013. P. 1–10. https://doi.org/10.1155/2013/473495
  10. Murugan N., Parmar R.S. Effect of welding conditions on microstructure and properties of type 316L stainless steel submerged arc cladding // Welding journal. 1997. V. 76. № 5. P. 210–220.
  11. Rashid R.R., Abaspour S., Palanisamy S., Matthews N., Dargusch M.S. Metallurgical and geometrical characterisation of the 316L stainless steel clad deposited on a mild steel substrate // Surface and Coatings Technology. 2017. V. 327. P. 174–184. https://doi.org/10.1016/j.surfcoat.2017.08.013
  12. Kingsley-Omoyibo Q.A. Weld porosity control using diagnostic case statistics for percentage dilution in a gas tungsten arc welding process // Nigerian Journal of Technology. 2019. V. 38. № 1. P. 127–133. https://doi.org/10.4314/njt.v38i1.17
  13. Yao J.T.P., Kozin F., Wen Y.K., Yang J.N., Schueller G.I., Ditlevsen O. Stochastic fatigue, fracture and damage analysis // Structural Safety. 1986. V. 3. № 3–4. P. 231–267. https://doi.org/10.1016/0167-4730(86)90005-6
  14. Weman K. Welding processes handbook. Cambridge: Elsevier, 2011. 193 p.
  15. Lara M., Díaz V.V., Camus M., Da Cunha T.V. Effect of transverse arc oscillation on morphology, dilution and microstructural aspects of weld beads produced with short-circuiting transfer in GMAW // Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2020. V. 42. № 9. P. 1–13. https://doi.org/10.1007/s40430-020-02533-w
  16. Martínez R.T., Bestard G.A., Silva A.M.A., AlfaroS C.A. Analysis of GMAW process with deep learning and machine learning techniques // Journal of Manufacturing Processes. 2021. V. 62. P. 695–703. https://doi.org/10.1016/j.jmapro.2020.12.052
  17. Montogomery D.C. Design and analysis of experiments. Arizona, USA: John Wiley & Sons Inc, 2013. 734 p.
  18. Sirisantisamrid K., Matsuura T., Tirasesth K. A simple technique to determine calibration parameters for coplanar camera calibration // In 2004 IEEE Region 10 Conference TENCON 2004. 2004. P. 677–680. https://doi.org/10.1109/TENCON.2004.1414511
  19. Sayyedbarzani S.A., Emam S.M. Evaluation of the quantization error in convergence stereo cameras // Journal of Optical Technology. 2020. V. 87. № 8. P. 495–500. https://doi.org/10.1364/JOT.87.000495
  20. Sayyedbarzani S.A., Emam S.M. 3D reconstruction accuracy improvement of a stereo vision system by changing the convergence angle of the cameras // Journal of Optical Technology. 2021. V. 88. № 10. P. 574–578. https://doi.org/10.1364/JOT.88.000574
  21. Bouguet J.Y. Camera calibration toolbox for Matlab. 2004. http://www. vision. caltech. edu/bouguetj/calib_doc/index. html
  22. Wang L.X. A course in fuzzy systems and control. New Jersey, USA: Prentice Hall PTR Upper Saddle River, 1997. 424 p.
  23. Jang J.S.R., Sun C.T., Mizutani E. Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review] // IEEE Transactions on automatic control. 1997. V. 42. № 10. P. 1482–1484.
  24. Ghomsheh V.S., Shoorehdeli M.A., Teshnehlab M. Training ANFIS structure with modified PSO algorithm // In 2007 Mediterranean Conference on Control & Automation. 2007. P. 1–6. https://doi.org/10.1109/MED.2007.4433927
  25. Liu P., Leng W., Fang W. Training ANFIS model with an improved quantum-behaved particle swarm optimization algorithm // Mathematical Problems in Engineering. 2013. V. 2013. P. 1–10. https://doi.org/10.1155/2013/595639
  26. Zangeneh A.Z., Mansouri M., Teshnehlab M., Sedigh A.K. Training ANFIS system with DE algorithm // In The Fourth International Workshop on Advanced Computational Intelligence. 2011. P. 308–314. https://doi.org/10.1109/IWACI.2011.6160022