ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-04-18-34

УДК: 535.421

Periodic structures laser formation as a method of one-stage production of security holograms

For Russian citation (Opticheskii Zhurnal):

Москвин М.К., Щедрина Н.Н., Долгополов А.Д., Прокофьев Е.В., Романов В.В., Синев Д.А., Вейко В.П., Одинцова Г.В. Лазерное формирование периодических структур как метод одноэтапного синтеза защитных голограмм // Оптический журнал. 2023. Т. 90. № 4. С. 18–34.

For citation (Journal of Optical Technology):

Moskvin M.K., Shchedrina N.N., Dolgopolov A.D., Prokofiev E.V., Romanov V.V., Sinev D.A., Veiko V.P., Odintsova V.P. Periodic structures laser formation as a method of one-stage production of security holograms [In Russia] // Opticheskii Zhurnal. 2023. V. 90. № 4. P. 18–34.


Subject of study. In this paper, methods of topology formation of elements based on laser­induced periodic surface structures for the implementation of various visual effects and structural features in a security hologram recorded directly on the surface of AISI 430 stainless steel are studied. The purpose of the work. The process optimization of recording images based on laser­induced periodic surface structures on bulk metal for creating dynamic images for solving problems of security holography. Method. The method is based on the formation of laser­induced periodic surface structures under the action of scanning laser radiation with simultaneous rotation of the polarization of laser radiation. The recording process is implemented using nanosecond fiber laser radiation with 1.064 µm wavelength, in a 2­dimensional scanning system with a flat field objective. Main results. A technique has been developed for creating a protective hologram consisting of a set of laser prints filled with diffractive microgratings with different spatial orientations. The main factors of influence on the laser­induced periodic surface structures spatial orientation during the formation of structures with a given topology and observed visual dynamic effects based on elementary diffractive microgratings are revealed: radiation polarization and beam scanning trajectory. It is shown that the period of micro­diffraction gratings is equal to the wavelength of the acting laser radiation and is about 1 µm. Practical significance. The method proposed in this work for the elementary diffractive microgratings formation makes it possible to obtain holographic elements/images with different spatial topology, various visual and structural features which meet the requirements for modern security holograms in their main areas of application.


Acknowledgment: the study was supported by the Russian Science Foundation (Project № 21­79­10241).


laser­induced periodic surface structures, security hologram, diffraction grating

OCIS codes: 090.5640, 050.1950.

  1. Denisyuk Yu.N. My way in holography / Yu.N. Denisyuk — the founder of Russian holography // Proceedings of the All­Russian Seminar. St. Petersburg: St. Petersburg State University ITMO, 2007. P. 7–14.
  2. Gabor D. Holography, 1948–1971 // Science. 1972. V. 177. № 4046. P. 299–313.
  3. Leith E.N., Upatnieks J. Reconstructed wavefronts and communication theory // JOSA. 1962. V. 52. № 10. P. 1123–1130.
  4. Benton S.A., Bove Jr.V.M. Holographic imaging. Hoboken.: John Wiley & Sons, 2008. P. 173
  5. Lu Y.T., Chi S. Compact, reliable asymmetric optical configuration for cost­effective fabrication of multiplex dot matrix hologram in anti­counterfeiting applications // Optik. 2003. V. 114. № 4. P. 161–167.­4026­00241
  6. Bulanovs A., Gerbreders V., Paschkevich V., Teteris J. Dot­matrix holographic recording in amorphous chalcogenide films // Advanced Optical Materials, Technologies, and Devices. SPIE. 2007. V. 6596. P. 128–131.
  7. Firsov A., Firsov A., Loechel B., Erko A., Svintsov A., Zaitsev S. Fabrication of digital rainbow holograms and 3D imaging using SEM based e­beam lithography // Optics Express. 2014. V. 22. № 23. P. 28756–28770.
  8. Zhu X., Yan W., Levy U., Mortensen N.A., Kristensen A. Resonant laser printing of structural colors on high­index dielectric metasurfaces // Science advances. 2017. V. 3. № 5. P. e1602487.
  9. Wlodarczyk K.L., Ardron M., Waddie, A.J., Dunn A., Kidd M.D., Weston N.J., Hand D.P. Laser microsculpting for the generation of robust diffractive security markings on the surface of metals // Journal of Materials Processing Technology. 2015. V. 222. P. 206–218.
  10. Tamulevičius T., Juodėnas M., Klinavičius T., Paulauskas A., Jankauskas K., Ostreika A., Žutautas A., Tamulevičiu, S. Dot­matrix hologram rendering algorithm and its validation through direct laser interference patterning // Scientific reports. 2018. V. 8. № 1. P. 1–11.­018­32294­5
  11. Lasagni A.F., Gachot C., Trinh K.E., Hans M., Rosenkranz A., Roch T., Mücklich F. Direct laser interference patterning, 20 years of development: From the basics to industrial applications // Laser­based micro­and nanoprocessing XI. SPIE. 2017. V. 10092. № 3. P. 186–196.
  12. Voisiat B., Wang W., Holzhey M., Lasagni A.F. Improving the homogeneity of diffraction based colours by fabricating periodic patterns with gradient spatial period using Direct Laser Interference Patterning // Scientific reports. 2019. V. 9. № 1. P. 1–9.­019­44212­4
  13. Birnbaum M. Semiconductor surface damage produced by ruby lasers // Journal of Applied Physics. 1965. V. 36. № 11. P. 3688–3689.
  14. Akhmanov S.A., Emel'yanov V.I., Koroteev N.I., Seminogov V.N. Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics // Soviet Physics Uspekhi. 1985. V. 28. № 12. P. 1084.
  15. Rudenko A., Mauclair C., Garrelie F., Stoian R., Colombier, J.P. Amplification and regulation of periodic nanostructures in multipulse ultrashort laser­induced surface evolution by electromagnetic­hydrodynamic simulations // Physical Review B. 2019. V. 99. № 23. P. 235412.
  16. Reif J., Varlamova O., Varlamov S., Bestehorn M. The role of asymmetric excitation in self­organized nanostructure formation upon femtosecond laser ablation // AIP Conference Proceedings. American Institute of Physics. 2012. V. 1464. № 1. P. 428–441.
  17. Bonse J., Gräf S. Maxwell meets Marangoni — a review of theories on laser­induced periodic surface structures // Laser & Photonics Reviews. 2020. V. 14. № 10. P. 2000215.
  18. Dusser B., Sagan Z., Soder H., Faure N., Colombier J.P., Jourlin M., Audouard E. Controlled nanostructrures formation by ultrafast laser pulses for color marking // Optics express. 2010. V. 18. № 3. P. 2913–2924.­012­6849­y
  19. Ionin A.A., Kudryashov S.I., Makarov S.V., Seleznev L.V., Sinitsyn D.V., Golosov E.V., Golosova O.A., Kolobov Y.R., Ligachev A.E. Femtosecond laser color marking of metal and semiconductor surfaces // Applied Physics A. 2012. V. 107. № 2. P. 301–305.­012­6849­y
  20. Tan B., Venkatakrishnan K. A femtosecond laser­induced periodical surface structure on crystalline silicon // Journal of Micromechanics and Microengineering. 2006. V. 16. № 5. P. 1080.­1317/16/5/029
  21. Vorobyev A.Y., Guo C. Effects of nanostructure­covered femtosecond laser­induced periodic surface structures on optical absorptance of metals // Applied Physics A. 2007. V. 86. № 3. P. 321–324.­006­3800­0
  22. Bonse J., Krüger J., Höhm S., Rosenfeld A. Femtosecond laser­induced periodic surface structures // Journal of Laser Applications. 2012. V. 24. № 4. P. 042006.
  23. Gräf S., Kunz C., Müller F.A. Formation and properties of laser­induced periodic surface structures on different glasses // Materials. 2017. V. 10. № 8. P. 933.
  24. Rebollar E., Castillejo M., Ezquerra T.A. Laser induced periodic surface structures on polymer films: From fundamentals to applications // European Polymer Journal. 2015. V. 73. P. 162–174.
  25. Long J., Fan P., Zhong M., Zhang H., Xie Y., Lin C. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures // Applied Surface Science. 2014. V. 311. P. 461–467.
  26. Zhang Y., Zou G., Liu L., Wu A., Sun Z., Zhou Y.N. Vacuum brazing of alumina to stainless steel using femtosecond laser patterned periodic surface structure // Materials Science and Engineering: A. 2016. V. 662. P. 178–184.
  27. Vorobyev A.Y., Guo C. Colorizing metals with femtosecond laser pulses // Applied Physics Letters. 2008. V. 92. № 4. P. 041914.
  28. Bonse J., Höhm S., Koter R., Hartelt M., Spaltmann D., Pentzien S., Rosenfeld A., Krüger J. Tribological performance of sub­100­nm femtosecond laser­induced periodic surface structures on titanium // Applied Surface Science. 2016. V. 374. P. 190–196.
  29. Martínez­Calderon M., Manso­Silván M., Rodríguez A., Gómez­Aranzadi M., García­Ruiz J.P., Olaizola S.M., Martín­Palma R.J. Surface micro­and nano­texturing of stainless steel by femtosecond laser for the control of cell migration // Scientific reports. 2016. V. 6. №. 1. P. 1–10.
  30. Ackerl N., Gugger P., Wegener K. Laser marking and coloration of Ti­6Al­4V with ultrashort pulses // Journal of Laser Applications. 2020. V. 32. № 3. P. 032013.
  31. Li G., Li J., Hu Y., Zhang C., Li X., Chu J., Huang W. Femtosecond laser color marking stainless steel surface with different wavelengths // Applied Physics A. 2015. V. 118. № 4. P. 1189–1196.­014­8868­3
  32. Lee K., Ki H. Femtosecond laser patterning based on the control of surface reflectance // Applied Surface Science. 2019. V. 494. P. 187–195.
  33. Jwad T., Penchev P., Nasrollahi V., Dimov S. Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms // Applied Surface Science. 2018. V. 453. P. 449–456.
  34. Gräf S. Formation of laser­induced periodic surface structures on different materials: fundamentals, properties and applications // Advanced Optical Technologies. 2020. V. 9. № 1–2. P. 11–39.­2019­0062
  35. Liu W., Jiang L., Han W., Hu J., Li X., Huang J., Zhan S., Lu Y. Manipulation of LIPSS orientation on silicon surfaces using orthogonally polarized femtosecond laser double­pulse trains // Optics Express. 2019. V. 27. № 7. P. 9782–9793.
  36. Kotsiuba Y., Hevko I., Bellucci S., Gnilitskyi I. Bitmap and vectorial hologram recording by using femtosecond laser pulses // Scientific Reports. 2021. V. 11. № 1. P. 1–8.­021­95665­5
  37. Hermens U., Pothen M., Winands K., Arntz K., Klocke F. Automated polarization control for the precise alignment of laser­induced self­organized nanostructures // Optics and Lasers in Engineering. 2018. V. 101. P. 44–50.
  38. Odinokov S. Methods and optoelectronic devices for automatic verification of the authenticity of protective holograms. Moscow: Technosphere, 2013. 176 p.
  39. Gnilitskyi I., Derrien T.J.Y., Levy Y., Bulgakova N.M., Mocek T., Orazi L. High­speed manufacturing of highly regular femtosecond laser­induced periodic surface structures: Physical origin of regularity // Scientific reports. 2017. V. 7. № 1. P. 1–11.­017­08788­z
  40. Andreeva Y.M., Luong V.C., Lutoshina D.S., Medvedev O.S., Mikhailovskii V.Y., Moskvin M.K., Odintsova G.V., Romanov V.V., Shchedrina N.N., Veiko V.P. Laser coloration of metals in visual art and design // Optical Materials Express. 2019. V. 9. № 3. P. 1310–1319.
  41. Öktem B., Pavlov I., Ilday S., Kalaycıoğlu H., Rybak A., Yavaş S., Erdoğan M., Ilday F.Ö. Nonlinear laser lithography for indefinitely large­area nanostructuring with femtosecond pulses // Nat Photon. 2013. V. 7. № 11. P. 897–901.
  42. Rudenko A., Abou­Saleh A., Pigeon F., Mauclair C., Garrelie F., Stoian R., Colombier J.P. High­frequency periodic patterns driven by non­radiative fields coupled with Marangoni convection instabilities on laser­excited metal surfaces // Acta Materialia. 2020. V. 194. P. 93–105.
  43. Tsibidis G.D., Skoulas E., Papadopoulos A., Stratakis E. Convection roll­driven generation of supra­wavelength periodic surface structures on dielectric suponir radiation with femtosecond pulsed lasers // Physical Review B. 2016. V. 94. № 8. P. 081305.
  44. Gurevich E.L. Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation // Applied Surface Science. 2016. V. 374. P. 56–60.
  45. Prodger P., Gunning T. Time stands still: Muybridge and the instantaneous photography movement. Oxford.: Oxford University Press, 2003. P. 328.
  46. Fauchet P.M., Siegman A.E. Surface ripples on silicon and gallium arsenide under picosecond laser illumination // Applied Physics Letters. 1982. V. 40. № 9. P. 824–826.
  47. Zhang C.Y., Yao J.W., Liu H.Y., Dai Q.F., Wu L.J., Lan S., Trofimov V.A., Lysak T.M. Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses // Optics letters. 2012. V. 37. № 6. P. 1106–1108.