ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-07-15-25

УДК: 551.501.816, 551.510.411

Optical transitions in long-wavelength light-emitting diode heterostructures based on InAsSb

For Russian citation (Opticheskii Zhurnal):

Ружевич М.С., Семакова А.А., Мынбаев К.Д., Баженов Н.Л. Оптические переходы в длинноволновых светодиодных гетероструктурах на основе InAsSb // Оптический журнал. 2023. Т. 90. № 7. С. 15–25.


Ruzhevich M.S., Semakova A.A., Mynbaev K.D., Bazhenov N.L. Optical transitions in long-wavelength light-emitting diode heterostructures based on InAsSb [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 7. P. 15–25.

For citation (Journal of Optical Technology):

Maxim S. Ruzhevich, Antonina A. Semakova, Karim D. Mynbaev, and Nikolay L. Bazhenov, "Optical transitions in long-wavelength light-emitting diode heterostructures based on InAsSb," Journal of Optical Technology . 90(7), 362-368 (2023).


Subject of study. n-InAs/InAs1–ySby/p-InAsSbP light-emitting diode heterostructure with indium antimonide molar fraction (y = 0.15) for long-wavelength (over 4 μm) region of the midinfrared range and epitaxial n+-InAs/InAs1–ySby films (y = 0–0.16). Aim of study. Determination of the nature of optical transitions in long-wavelength InAsSb-based light-emitting diode heterostructures aimed at extension of the range of their operation to the spectral region of wavelengths over 4 μm; decreasing the temperature dependence of the wavelength of heterostructures. Method. The heterostructures under study were grown by metal-organic vapor phase epitaxy, and the lightemitting diode chip was formed by standard photolithography and chemical etching. The optical properties of the resulting structures were studied by photo- and electroluminescence methods, the chemical composition of the films was studied by energy-dispersive X-ray spectroscopy on a scanning electron microscope, and the structural properties of the films were studied by X-ray diffractometry. Main results. It is shown that the structural and optical properties of InAs1–ySby epitaxial films are largely determined by the indium antimonide content in the ternary solid solution. A significant effect of radiative transitions involving interface states at the “film–substrate” heterointerface, as well as indirect recombination transitions at a step-like type II InAsSb/InAsSbP heterojunction in the n-InAs/InAs0.85Sb0.15/p-InAsSbP light-emitting diode heterostructure at temperatures below 150 K on the optical properties of the structures is demonstrated. It is shown that switching of the main channel of radiative recombination of structures makes it possible to reduce the influence of temperature on their wavelength. Practical significance. The revealed effect of switching of the main channel of radiative recombination with temperature determines the prospects for the manufacture of temperature-stable light-emitting diodes for the midinfrared range.


indium antimonide, antimonides, heterostructures, luminescence


The authors are grateful to V.V. Romanov, K.D. Moiseev, S.S. Kizhaev, A.V. Chernyaev and N.D. Stoyanov for providing structures for research, A.M. Smirnov for conducting X-ray diffraction studies, and M.V. Dorogov for conducting research using scanning electron microscopy.

OCIS codes: 250.5230, 260.3060, 260.3800


1. Hodgkinson J., Tatam R.P. Optical gas sensing: A review // Measurement Sci. and Technol. 2013. V. 24. № 1. Р. 012004.
2. Aleksandrov S.E., Gavrilov G.A., Kapralov A.A., et al. InAsSb diode optical pairs for real-time carbon dioxide sensors // Technical Physics. 2018. V. 63. № 9. P. 1390–1395.
3. Rogalski A., Martyniuk P., Kopytko M., et al. InAsSbbased infrared photodetectors: Thirty years later on // Sensors. 2020. V. 20. № 24. Р. 7047.
4. Ongstad A.P., Kaspi R., Dente G.C., et al. Wavelength tuning limitations in optically pumped type-II antimonide lasers // Appl. Phys. Lett. 2008. V. 92. № 14. Р. 141106.

5. Semakova A.A., Romanov V.V., Bazhenov N.L., et al. Suppressing the temperature dependence of the wavelength in heterostructures with a staggered type-II InAsSb/InAsSbP heterojunction // Semiconductors. 2021. V. 55. № 3. P. 354–358.
6. Romanov V.V., Ivanov E.V., Moiseev K.D. InAs(1–y)Sby/InAsSbP narrow-gap heterostructures (y = 0.09–0.16) grown by metalorganic vapor phase epitaxy for the spectral range of 4–6 μm // Physics of the Solid State. 2019. V. 61. № 10. P. 1699–1706.

7. Sopanen M., Koljonen T., Lipsanen H., et al. Growth of GaInAsSb using tertiarybutylarsine as arsenic source // J. Crystal Growth. 1994. V. 145. № 1–2. P. 492–497.
8. Landolt-Börnstein Numerical Data. Ser. III. Handbook. V. 17a / ed. by Madelung O. Berlin–Heidelberg: Springer, 1982.
9. Varshni Y.P. Temperature dependence of the energy gap in semiconductors // Physica. 1967. V. 34. № 1. P. 149–154.
10. van Vechten J.A., Bergstresser T.K. Electronic structures of semiconductor alloys // Phys. Rev. B. 1970. V. 1. № 8. P. 3351–3357.
11. Mynbaev K.D., Bazhenov N.L., Semakova A.A., et al. Spontaneous and stimulated emission in InAsSbbased LED heterostructures // Infrared Phys. and
Technol. 2017. V. 85. P. 246–250.
12. Taghipour Z., Rogers V., Ringel B., et al. Photoluminescence spectroscopy of metamorphic InAsSb on GaAs and Si // J. Luminescence. 2020. V. 228. Р. 117581.
13. Tong J.C., Xie Y.Y., Ni P.N., et al. InAs0.91Sb0.09 photoconductor for near and middle infrared photodetection // Physica Scripta. 2016. V. 91. № 11. Р. 115801.
14. Webster P.T., Riordan N.A., Liu S., et al. Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy // J. Appl. Phys. 2015. V. 118. № 24. Р. 245706.
15. Svensson S.P., Sarney W.L., Hier H., et al. Band gap of InAs1–xSbx with native lattice constant // Phys. Rev. B. 2012. V. 86. № 24. Р. 245205.
16. Fisher M., Krier A. Photoluminescence of epitaxial InAs produced by different growth methods // Infrared Phys. and Technol. 1997. V. 38. № 7. P. 405–413.
17. Lacroix Y., Tran C.A., Watkins S.P., et al. Lowtemperature photoluminescence of epitaxial InAs // J. Appl. Phys. 1996. V. 80. P. 6416–6424.

18. Esina N.P., Zotova N.V. Mechanisms of recombination of excess current carriers in indium arsenide and solid solutions based on it [in Russian] // Physics and Technology of Semiconductors. 1980. V. 14. № 2. Р. 316–322.
19. Bazhenov N.L., Mynbaev K.D., Semakova A.A., et al. Carrier lifetime in semiconductors with band-gap widths close to the spin-orbit splitting energies // Semiconductors. 2019. V. 53. № 4. P. 428–433.
20. Grigoryev M.M., Ivanov E.V., Moiseev K.D. Interfacial luminescence in an InAs/InAsSbP isotype type II heterojunction at room temperature // Semiconductors. 2011. V. 45. № 10. P. 1334–1338.

21. Mao Y., Krier A. Uncooled 4.2 μm light emitting diodes based on InAs0.91Sb0.09/GaSb grown by LPE // Opt. Mater. 1996. V. 6. № 1–2. P. 55–61.
22. Steenbergen E.H., Massengale J.A., Ariyawans G., et al. Evidence of carrier localization in photoluminescence spectroscopy studies of mid-wavelength
infrared InAs/InAs1–xSbx type-II superlattices // J. Luminescence. 2016. V. 178. P. 451–456.
23. Smołka T., Motyka M., Romanov V.V., et al. Photoluminescence spectroscopy of the InAsSb-based p-i-n heterostructure // Mater. 2022. V. 15. № 4. Р. 1419.
24. Yen Y.M., People R., Wecht K.W. Long wavelength (3–5 and 8–12 μm) photoluminescence of InAs1–xSbx grown on (100) GaAs by molecular-beam epitaxy // J. Appl. Phys. 1988. V. 64. № 2. P. 952–954.