ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-09-55-63

УДК: 681.7.013.8, 535.4

Measurement setup for quality control of Fresnel zone plate with pinholes

For Russian citation (Opticheskii Zhurnal):

Леонов М.Б., Серегин Д.А., Грибова Н.Ю. Установка для контроля характеристик качества зонной пластинки Френеля с круглыми отверстиями // Оптический журнал. 2023. Т. 90. № 09. С. 55–63.


Leonov M.B, Seregin D.A., Gribova N.Y. Measurement setup for quality control of Fresnel zone plate with pinholes [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 9. P. 55–63.

For citation (Journal of Optical Technology):
  M. B. Leonov, D. A. Seregin, and N. Y. Gribova, "Measurement setup for quality control of a Fresnel zone plate with pinholes," Journal of Optical Technology. 90(9), 523-527 (2023)

Subject of the study. The Fresnel zone plate with circular zones made of pinholes, is also known as a photon sieve, and measurement setup for its’ quality characteristics testing. Aim of study is to consider the prospects of photon sieve regarding to optoelectronic devices, to develop a quality control scheme and measurement setup layout, evaluate the selected manufacturing method and practical applicability of photon sieve samples. Method. The Fresnel zone plate development level analysis regarding to optoelectronic devices. Manufactured Fresnel zone plate’s quality characteristics testing using measurement setup prototype. Comparison between Fresnel zone plate’s measurement results and calculations. Main results. The prospects of Fresnel zone plates with pinholes regarding to optoelectronic devices are considered. Developed samples are used to verify the available methods of Fresnel zone plate manufacturing and their practical applicability. Fresnel zone plate’s quality characteristics measurement setup scheme is proposed, considering low energy efficiency, which implements point spread function, line spread function, modulation transfer function standardized test methods. Measurement setup prototype based on an interferometer (as a source of monochromatic radiation) and an analyzing unit based on a digital camera was manufactured. Measurement setup prototype for the Fresnel zone plate samples quality control measurement (point spread function, line spread function, modulation transfer function) was tested. Measurement results and calculations were compared — subsidiary maximums of line spread function are significantly higher than calculated line spread function values, but, nevertheless, the line spread function’s primary maximum width coincides with calculated value at the levels from 0,1 to 1 relative units with error no more than pixel size of analyzing unit digital camera. Practical significance. Although the manufactured Fresnel zone plate samples dissatisfying modern imaging optical systems’ quality characteristics, the idea of using the photon sieve to create ultra-light space-based optoelectronic systems seems to be promising. In the future, it is worth to consider other manufacturing options that will allow to create Fresnel zone plate samples with greater accuracy of pinholes location. Modern developments already made possible significantly higher energy efficiency, which may provide the photon sieve practical application for space instrumentation in future. Measurement setup prototype for current low energy efficiency Fresnel zone plate samples is efficiently and approved during Fresnel zone plate samples testing on 0,6328 µm wavelength. Improving the manufacturing technology and creating more high-aperture Fresnel zone plates, both methods and quality control measurement schemes can be improved to ensure reliable results of Fresnel zone plate’s quality characteristics testing.


diffractive optical elements, Fresnel zone plate, photon sieve, optical measurements, line spread function, modulation transfer function, energy efficiency

OCIS codes: 120.4630, 120.4820, 050.1965


1.    Бобров С.Т., Грейсух Г.И., Туркевич Ю.Г. Оптика дифракционных элементов и систем. Л.: Машинстроение, ЛО, 1986. 223 с.

       Bobrov S.T., Greisukh G.I., Turkevich Yu.G. Optics of diffractive elements and systems [in Russian]. Leningrad: “Mashinostroenie” Publ., 1986. 223 p.

2.   Горбунов Г.Г., Еськов Д.Н., Парпин М.А. и др. Использование современных технологий при создании оптико-электронных систем // Изв. вузов. Приборостроение. 2021. Т. 64. № 2. С. 126—136.

       Gorbunov G.G., Eskov D.N., Parpin M.A., et al. The use of modern technologies in the creation of optoelectronic systems [in Russian] // J. Instr. Eng. 2021. V. 64. № 2. P. 126–136.

3.   Asmolova O., Andersen G.P., Cumming M.A. Photon sieves for creating and identifying orbital angular momentum of light // Proc. SPIE. V. 10120. Complex Light and Optical Forces XI (February 27, 2017). P. 1012009.

4.   Andersen G. Membrane photon sieve telescopes // Appl. Opt. 2010. V. 49. P. 6391–6394.

5.   Kim H.J., Hariharan S., Julian M., et al. Technology and opportunities of photon sieve CubeSat with deployable optical membrane // Aerospace Sci. and Technol. 2018. V. 80. P. 212–220.

6.   MacEwen H.A., Breckinridge J.B. Large diffractive/refractive apertures for space and airborne telescopes // Proc. SPIE. V. 8739. Sensors and Systems for Space Applications VI (May 21, 2013). P. 873904

7.    Cunningham C.R., Evans C.J., Molster F., et al. Innovative technologies for optical and infrared astronomy // Proc. SPIE V. 8450. Modern Technologies in Space- and Ground-based Telescopes and Instrumentation II (September 13, 2012). P. 845031.

8.   Кружалов С.В., Лавров А.П., Леонов М.Б. и др. Моделирование и экспериментальное исследование фокусирующих свойств двумерной зонной пластинки Френеля при синтезе ее колец набором малых отверстий // VII Междунар. конф. по фотонике и информационной оптике: Сб. науч. тр. М.: изд. НИЯУ МИФИ, 2018. C. 150–151.

       Kruzhalov S.V., Lavrov A.P., Leonov M.B., et al. Modeling and experimental investigation of focusing properties of two-dimensional Fresnel plate in its rings synthesis by many small holes [in Russian] // Proc. VII Internat. Conf. "Photonics and Information Optics". Moskow: NRNU MEPhI Publ., 2018. P. 150–151.

9.   Roose S., Stockman Y., Derauw D., et al. The challenges for large light-weight diffractive lenses for space telescopes // Proc. SPIE V. 10563. Internat. Conf. on Space Opt. — ICSO 2014 (November, 17 2017). P. 105635Y.

10. Kipp L., Skibowski M., Johnson R., et al. Sharper images by focusing soft X-rays with photon sieves // Nature. 2001. V. 414. P. 184–188.

11.  Serre D. L’Imageur Interférométrique de Fresnel: Un instrument spatial pour l’observation à haute résolution angulaire [en français] // PhD thesis. Université Toulouse III – Paul Sabatier. France, 2007. 199 p.

12.  Jian Zhang, Mengjuan Li, Ganghua Yin, et al. Fabrication of large-aperture, high efficiency, Fresnel diffractive membrane optic for space telescope // Proc. SPIE. V. 9682. 8th Internat. Symp. Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes (October, 24 2016). P. 96820O.

13.  Wenbo Sun, Yongxiang Hu, MacDonnell D.G., et al. Fully transparent photon sieve // Opt. Exp. 2017. V. 25. № 15. P. 17356–17363.

14.  Wenbo Sun, Yongxiang Hu, MacDonnell D.G., et al. Fully reflective photon sieve // J. Quantitative Spectrosc. and Radiative Transfer. 2018. V. 206. P. 101–104.

15.  Julian M.N., MacDonnell D.G., Gupta M.C. High-efficiency flexible multilevel photon sieves by single-step laser-based fabrication and optical analysis // Appl. Opt. 2019. V. 58. № 1. P. 109–114.

16.  Августинович К.А. Основы фотографической метрологии. М.: Легпромбытиздат, 1990. 288 с.

       Avgustinovich K.A. Foundations of photographic metrology [in Russian]. Moscow: “Legprombytizdat” Publ., 1990. 288 p.

17.  ГОСТ Р 58566-2019 Оптика и фотоника. Объективы для оптико-электронных систем. Методы испытаний Введ. 27.09.2019. М.: Стандартинформ, 2019. 31 с.

       GOST R 58566-2019 Optics and photonics. Lenses for optical-electronic systems. Test methods. [in Russian] Introduction 09/27/2019. Moscow: “Standartinform” Publ., 2019. 31 p.

18. Леонов М.Б. Особенности разработки установок для измерения характеристик качества оптических систем видимого диапазона спектра // Оптический журнал. 2019. Т. 86. № 5. С. 11–16.

       Leonov M.B. Features of the development of systems for measuring the quality characteristics of optical systems of the visible spectrum // J. Opt. Technol. 2019. V. 86. № 5. P. 268–272.

19.  Шульман М.Я. Измерение передаточных функций оптических систем. Л.: Машиностроение, 1980. 208 с.

       Shulman M.Ya. Measurement of transfer functions of optical systems. [in Russian] Leningrad: “Mashinostroenie” Publ., 1980. 208 p.

20. Кирилловский В.К Современные оптические исследования и измерения: учеб. пособ. СПб.: изд. «Лань», 2010. 304 с.

       Kirillovskiy V.K. Modern optical studies and measurements [in Russian] St. Petersburg: “Lan” Publ., 2010. 304 р.