ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-09-91-101

УДК: 535.4

Real-time monitoring for composites forming process based on superstructure fiber grating sensing and linear demodulation

For Russian citation (Opticheskii Zhurnal):

Zhan Ya., Zhang W., Xu L., Han M., Wang Z. Real-time monitoring for composites forming process based on superstructure fiber grating sensing and linear demodulation [in English] // Opticheskii Zhurnal. 2023. V. 90. № 9. P. 91–101. http://doi.org/10.17586/1023-5086-2023-90-09-91-101

 

Zhan Ya., Zhang W., Xu L., Han M., Wang Z. Real-time monitoring for composites forming process based on superstructure fiber grating sensing and linear demodulation (Мониторинг процесса формования композитов с помощью сенсора на основе оптоволоконных брэгговских решeток при использовании линейной демодуляции в реальном времени) [на англ. яз.] // Оптический журнал. 2023. Т. 90. № 9. С. 91–101. http://doi.org/10.17586/1023-5086-2023-90-09-91-101

For citation (Journal of Optical Technology):
Yage Zhan, Wenzhuo Zhang, Long Xu, Min Han, and Ziting Wang, "Real-time monitoring for the composite forming process based on superstructure fiber grating sensing and linear demodulation," Journal of Optical Technology. 90(9), 545-552 (2023). https://doi.org/10.1364/JOT.90.000545
Abstract:

Subject of study. An all-fiber grating sensor system has been applied to composites forming monitoring for real-time monitoring of the changes of temperature and strain in the forming process. The purpose of the work is optimization of sensor parameters based on fiber-optic Bragg gratings by reducing the effect of photoelectric conversion errors during signal demodulation. Method. Two kinds of fiber gratings, including polarization maintaining fiber grating have been used as sensing elements and demodulation elements respectively. The all-fiber sensing system for real-time monitoring of composites forming process has been built. The system acquires the optical signals related to the parameters to be measured, records the optical power of the signal and converts it to the wavelength shift in real time. The temperature and strain can be calculated real-time according to the wavelength. The fiber grating with linear spectrum used as a linear demodulator is designed and developed by ourselves. Main results. The demodulator has the linear demodulation in 1544–1556 nm with a linearity of 2.21 dB/nm and the sensor has a dynamic range of 1200 °C and 11000 µe. The experimental results show that the all-fiber grating sensor system we designed can clearly reflect the changes of temperature and strain of the composites during the forming process. In the steady state, the maximum temperature difference is less than 10 °C, the maximum temperature difference is less than 100 µe, which is consistent with the actual situation. Practical significance. The demonstrated feasibility of the sensor system provides a new thought of demodulation and monitoring for composites forming process. Through the further optimization, it can realize more rapid and accurate real-time monitoring for composites forming process.

Keywords:

real-time monitoring, superstructure fiber grating, linear demodulation, temperature, strain

Acknowledgements:

Supported by Natural Science Foundation of Shanghai (Grant № 21ZR1402400) and Nonlinear Science Institute of Donghua University

OCIS codes: 060.2370

References:

1.    Ma Q., Li J., Tian S. Forming technology of thermoplastic composite and its application in aircraft // New Chem. Mater. 2022. V. 50. № 6. P. 263–266, 271.

2.   Roux M., Eguemann N., Dransfeld C., et al. Thermoplastic carbon fibre-reinforced polymer recycling with electrodynamical fragmentation: From cradle to cradle // J. Thermoplastic Composite Mat. 2017. V. 30. № 3. P. 381–403. https://doi.org/10.1177/0892705715599431

3.   Avci H., Akkulak E., Gergeroglu H., et al. Flexible poly(styrene-ethylene-butadiene-styrene) hybrid nanofibers for bioengineering and water filtration applications // J. Appl. Polymer Sci. 2020. V. 137. № 26. P. 49184. https://doi.org/10.1002/app.49184

4.   Wang C.T., Hsieh T.S., Hsu H.C., et al. Curing monitoring of cross-ply and quasi-isotropic-ply carbon fiber/epoxy composite material with metal-coated fiber Bragg grating sensors // Optik. 2019. V. 184. P. 490–498. https://doi.org/10.1016/j.ijleo.2019.04.126

5.   Chen J., Fu K., Li Y. Understanding processing parameter effects for carbon fibre reinforced thermoplastic composites manufactured by laser-assisted automated fibre placement (AFP) // Composites Part a-Appl. Sci. and Manufacturing. 2021. V. 140. P. 160. https://doi.org/10.1016/j.compositesa.2020.106160

6.   Zhan Y., Lin F., Guo A., et al. Polyimide-coated fiber Bragg grating sensor for monitoring of the composite materials curing process // J. Opt. Technol. 2020. V. 87. № 8. P. 501–505. https://doi.org/10.1364/jot.87.000501

7.    Zhan Y., Lin F., Guo A. и др. Датчик для мониторинга процессов технологической обработки композитных материалов, использующий брэгговскую решётку в волокне с полиимидной оболочкой [in English] // Оптический журнал. 2020. Т. 87. № 8. С. 72–78. https://doi.org/10.17586/1023-5086-2020-87-08-72-78

8.   Nascimento M., Inacio P., Paixao T., et al. Embedded fiber sensors to monitor temperature and strain of polymeric parts fabricated by additive manufacturing and reinforced with NiTi wires // Sensors. 2020. V. 20. № 4. P. 1122. https://doi.org/10.3390/s20041122

9.   Tsukada T., Minakuchi S., Takeda N. Identification of process-induced residual stress/strain distribution in thick thermoplastic composites based on in situ strain monitoring using optical fiber sensors // J. Composite Mat. 2019. V. 53. № 24. P. 3445–3458. https://doi.org/10.1177/0021998319837199

10. Konstantaki M., Violakis G., Pappas G.A., et al. Monitoring of torque induced strain in composite shafts with embedded and surface-mounted optical fiber Bragg gratings // Sensors. 2021. V. 21. № 7. P. 2403. https://doi.org/10.3390/s21072403

11.  Zhang J., Yu H., Li L., et al. Study of monitoring CF3052/5224 composites molding process by optical fiber Bragg grating // Mat. Sci. and Technol. 2015. V. 23. № 4. P. 17–22. http://dx.doi.org/10.11951/j.issn.1005-0299.20150403

12.  Hsiao T.C., Hsieh T.S., Chen Y.C., et al. Metal-coated fiber Bragg grating for dynamic temperature sensor // Optik. 2016. V. 127. № 22. P. 10740–10745. https://doi.org/10.1016/j.ijleo.2016.08.110

13.  Wang J., Zhu W., Ma C., et al. FBG wavelength demodulation based on a radio frequency optical true time delay method // Opt. Lett. 2018. V. 43. № 11. P. 2664–2667. https://doi.org/10.1364/ol.43.002664

14.  Bloessl Y., Hegedus G., Szebenyi G., et al. Applicability of fiber Bragg grating sensors for cure monitoring in resin transfer molding processes // J. Reinforced Plastics and Composites. 2021. V. 40. № 19–20. P. 701–713. https://doi.org/10.1177/0731684420958111

15.  Melle S.M., Liu K.X., Measures R.M. A passive wavelength demodulation system for guided-wave Bragg grating sensors // IEEE Photon. Technol. Lett. 1992. V. 4. № 5. P. 516–518. https://doi.org/10.1109/68.136506

16.       Wu J., Wu H., Huang J., et al. Research progress in edge filter demodulation method of fiber Bragg grating sensors // Opt. Commun. Technol. 2014. V. 38. № 4. P. 38–41. https://doi.org/10.1364/OE.433914