DOI: 10.17586/1023-5086-2025-92-01-3-12
УДК: 535.8 681.7.062
Evaluation of the wavefront distortion compensation efficiency with high-resolution piezoelectric deformable mirrors by reproducing orthogonal Zernike polynomials
Топоровский В.В., Галактионов И.В., Абдулразак С.Х., Кудряшов А.В. Оценка эффективности компенсации искажений волнового фронта пьезоэлектрическими деформируемыми зеркалами с высоким пространственным разрешением управляющих элементов путем воспроизведения ортогональных полиномов Цернике // Оптический журнал. 2025. Т. 92. № 1. С. 3–12. http://doi.org/10.17586/1023-5086-2025-92-01-3-12
Toporovsky V.V., Galaktionov I.V., Abdulrazak S.Kh., Kudryashov A.V. Evaluation of the wavefront distortion compensation efficiency with high-resolution piezoelectric deformable mirrors by reproducing orthogonal Zernike polynomials [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 1. P. 3–12. http://doi.org/10.17586/1023-5086-2025-92-01-3-12
Subject of study. Piezoelectric deformable mirrors of the bimorph and the piezoactuator type with high spatial resolution of control elements. Aim of study. Suppression of the atmospheric turbulence effects influence on the laser radiation wavefront by wavefront correctors with modal and local response functions of control elements through the reproduction of Zernike polynomials. Method. Using a Shack–Hartmann wavefront sensor, the coefficients of the Zernike polynomials were analyzed. The values of the maximum control voltage and the residual standard deviation were used as a criterion for the reproduction efficiency. Main results. The used piezoelectric wavefront correctors of the bimorph type make it possible to reproduce Zernike polynomials up to the 7th order in the Wyant classification, while the deformable mirror of the piezoactuator type was able to reconstruct Zernike polynomials up to the 8th order. In this case, the bimorph mirror compensates for largescale aberrations of the wavefront with high amplitude in comparison with the piezoactuator one. However, the piezoactuator wavefront corrector reproduces high-order aberrations with greater amplitude. Practical significance. The results of the study of deformable mirrors of the bimorph and piezoactuator type obtained in this work can be used in the field of correction of large- and small-scale aberrations of laser radiation, propagated through the atmospheric turbulence.
adaptive optics, piezoelectric deformable mirrors, Zernike polynomials, Shack– Hartmann wavefront sensor
OCIS codes: 230.4040, 220.1080, 010.1285
References:1. Ye X., Shen F. Analysis of aiming performance limitation for optical system in atmospheric turbulence (Анализ ограничений на точность сопровождения объекта оптическими системами в турбулентной атмосфере) [на англ. яз.] // Оптический журнал. 2018. Т. 85. № 10. С. 8–16.
Ye X., Shen F. Analysis of aiming performance limitation for an optical system in atmospheric turbulence // J. Opt. Technol. 2018. V. 85. P. 603–609. https://doi. org/10.1364/JOT.85.000603
2. Страхов С.Ю., Трилис А.В., Сотникова Н.В. Особенности передающих телескопов для систем лазерной связи // Оптический журнал. 2021. Т. 88. № 5. С. 52–59. http://doi.org/10.17586/1023-5086-2021-88-05-52-59
Strakhov S.Yu., Trilis A.V., Sotnikova N.V. Specifics of transmitting telescopes for laser communication systems // J. Opt. Technol. 2021. V. 88. P. 264–269. https://doi.org/10.1364/JOT.88.000264
3. Кондратенко В.С., Мальцев П.П., Редькин С.В. Лазерная плазмохимическая обработка оптоэлектронных материалов // Оптический журнал. 2021. Т. 88. № 10. С. 78–82. http://doi.org/10.17586/1023-5086-2021-88-10-78-82
Kondratenko V.S., Mal’tsev P.P., Red’kin S.V. Laser plasma-chemical treatment of optoelectronic materials // J. Opt. Technol. 2021. V. 88. P. 606–609. https://doi.org/10.1364/JOT.88.000606
4. Клеймёнов В.В., Возмищев И.Ю., Новикова Е.В. Ограничения применения лазерной опорной звезды в адаптивных оптико-электронных системах, обусловленные её дрожанием в атмосфере // Оптический журнал. 2021. Т. 88. № 10. С. 24–32. http://doi. org/10.17586/1023-5086-2021-88-10-24-32
Kleimenov V.V., Vozmishchev I.Yu., Novikova E.V. Application limitations of a laser guide star in adaptive optoelectronic systems caused by its jitter in the atmosphere // J. Opt. Technol. 2021. V. 88. P. 569–573. https://doi.org/10.1364/JOT.88.000569
5. Arockia Bazil Raj A., Lancelot J.P. Seasonal investigation on prediction accuracy of atmospheric turbulence strength with a new model at Punalkulam, Tamil Nadu [на англ. яз.] // Оптический журнал. 2016. Т. 83. № 1. С. 73–89.
Arockia Bazil Raj A., Lancelot J.P. Seasonal investigation on prediction accuracy of atmospheric turbulence
strength with a new model at Punalkulam, Tamil Nadu // J. Opt. Technol. 2016. V. 83. P. 55–68. https://doi.org/ 10.1364/JOT.83.000055
6. Alamouti S.M. A simple transmit diversity technique for wireless communications // IEEE J. Select. Areas Commun. 1998. V. 16. № 8. P. 1451–1458. https://doi.org/ 10.1109/49.730453
7. Qu Z., Djordjevic I.B. 500 Gb/s free-space optical transmission over strong atmospheric turbulence channels // Opt. Lett. 2016. V. 41. № 14. P. 3285–3288. https://doi.org/10.1364/OL.41.003285
8. Li Z., Cao J., Zhao X., et al. Combinational-deformablemirror adaptive optics system for atmospheric compensation in free space communication // Opt. Commun. 2014. V. 320(2). P. 162–168. https://doi.org/10.1016/j.optcom.2014.01.042
9. Rukosuev A., Nikitin A., Toporovsky V., et al. A realtime correction of a laser beam wavefront distorted by an artificial turbulent heated airflow // Photonics. 2022. V. 9. № 5. P. 351. https://doi.org/10.3390/photonics9050351
10. Belmonte A., Kahn J.M. Sequential optimization of adaptive arrays in coherent laser communications // J. Lightwave Technol. 2013. V. 31. № 9. P. 1383–1387. https://doi.org/10.1109/JLT.2013.2250484
11. Bifano T. MEMS deformable mirrors // Nature Photonics. 2011. V. 5. P. 21–23. https://doi.org/10.1038/nphoton.2010.297
12. Salinari P., Del Vecchio C., Biliotti V. A study of an adaptive secondary mirror // Proc. ICO-16. 1993. P. 247. https://doi.org/10.1364/AO.37.004656
13. Toporovsky V., Samarkin V., Sheldakova J., et al. Water-cooled stacked-actuator flexible mirror for highpower laser beam correction // Opt. & Laser Technol. 2021. V. 144. P. 107427. https://doi.org/10.1016/j.optlastec.2021.107427
14. Wlodarczyk K., Bryce E., Schwartz N. Scalable stacked array piezoelectric deformable mirror for astronomy and laser processing applications // Rev. Sci. Instruments. 2014. V. 85. № 2. P. 024502. https://doi.org/10.1063/1.4865125
15. Yagnyatinskiy D.A., Fedoseyev V.N. Modal control of a deformable mirror via the focal spot using actuator influence functions // Proc. Intern. Conf. Laser Optics 2018. St. Petersburg, Russia. June 4, 2018. P. 8435877. https://doi.org/10.1109/LO.2018.8435877
16. Toporovsky V., Kudryashov A., Skvortsov A., et al. State-of-the-art technologies in piezoelectric deformable mirror design // Photonics. 2022. V. 9. № 5. P. 321. https://doi.org/10.3390/photonics9050321
17. Ahn K., Kihm H. Moment actuator for correcting loworder aberrations of deformable mirrors // Opt. and Lasers in Eng. 2020. V. 126. P. 105864. https://doi. org/10.1016/j.optlaseng.2019.105864
18. Ivanova N., Onokhov A., Chaika A. Liquid-crystal spatial light modulators for adaptive optics and image processing // Proc. SPIE. 1996. V. 2754. P. 180–185. https://doi.org/10.1117/12.243141
19. Hampton P., Bradley C., Agathoklis P., et al. Control system performance of a woofer-tweeter adaptive optics system // Proc. The Advanced Maui Optical and Space Surveillance Technologies Conf. 2006. Wailea, Maui, Hawaii. September 10–14, 2006. P. 16–24. https://doi.org/10.1364/JOSAA.27.00A145
20. Lavigne J.-F., Véran J.-P. Woofer-tweeter control in an adaptive optics system using a Fourier reconstructor // JOSA A. 2008. V. 25. P. 2271–9. https://doi.org/10.1364/JOSAA.25.002271
21. Dai G.M. Modal compensation of atmospheric turbulence with the use of Zernike polynomials and Karhunen–Loève functions // JOSA A. 1995. V. 12. P. 2182–2193. https://doi.org/10.1364/JOSAA.12.002182
22. Roddier F. Adaptive optics in astronomy. 1st ed. Cambridge University Press, 1999. 420 p.
23. Primot J. Theoretical description of Shack–Hartmann wave-front sensor // Opt. Commun. 2003. V. 222. P. 81–92. https://doi.org/10.1016/S0030-4018(03)01565-7
24. Goodwin E.P., Wyant J.C. Field guide to interferometric optical testing / SPIE Publications, 2006. 114 p. https://doi.org/10.1117/3.702897
25. Марешаль А., Франсон М. Структура оптического изображения / пер. с франц. Губеля Н.Н. под ред. Слюсарева Г.Г. М.: Мир, 1968. 295 с.
Marechal A., Francon M. Diffraction. Structure des images. Influence de la cohérence de la Lumiere. Paris, 1960. 216 p.