ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-01-80-89

УДК: 621.389

The technological parameters influence of the photosensitive structures formation based on metal phthalocyanine using a non-fullerene acceptor on their characteristics

For Russian citation (Opticheskii Zhurnal):

Павлова М.Д., Хоршев Н.А., Ламкин И.А., Дегтерев А.Э., Зорин И.А., Тарасов С.А. Влияние технологических параметров формирования фоточувствительных структур на основе фталоцианина металла при использовании нефуллеренового акцептора на их характеристики // Оптический журнал. 2025. Т. 92. № 1. С. 80–89. http://doi.org/ 10.17586/1023-5086-2025-92-01-80-89

 

Pavlova M.D., Khorshev N.A., Lamkin I.A., Degterev A.E., Zorin I.A., Tarasov S.A. The technological parameters influence of the photosensitive structures formation based on metal phthalocyanine using a non-fullerene acceptor on their characteristics [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 1. P. 80–89. http://doi.org/10.17586/1023-5086-2025-92-01-80-89

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Photosensitive structures with planar heterojunction based on copper phthalocyanine and 3,4,9,10-perylenetetracarboxyl dianhydride. Aim of study. Formation of organic photosensitive structures based on metal phthalocyanine and non-fullerene acceptor. Method. Мethod of vacuum thermal deposition was used to create photosensitive structures. To study structures, absorption and photocurrent spectra were measured. Main results. Optimal parameters for creating organic photosensitive structures using a non-fullerene acceptor have been determined. It has been shown that the optimal substrate heating temperatures affecting the quality of deposited layers are 60 °C for copper phthalocyanine and 55 °C for 3,4,9,10-perylenetetracarboxyl dianhydride. It has been established that the main contribution to the photoresponse of the structure is made by the generation of charge carriers in copper phthalocyanine. The effect of the evaporated donor mass on the photosensitivity spectra of the structures has been determined. The structures under study demonstrate a response in the energy range from 1.35 to 2.45 eV. Practical significance. The results of the work can be applied in the development of photodetectors based on organic materials for the visible and near infrared ranges of the spectrum for using communication systems, visualization, spectroscopy, medical diagnostics, etc. In addition, developed structures have a lower cost, compared to devices based on classical inorganic semiconductors.

Keywords:

organic photosensitive structures, non-fullerene acceptor, vacuum thermal deposition, copper phthalocyanine, 3,4,9,10-perylenetetracarboxyl dianhydride

OCIS codes: 160.4890, 040.5350, 040.5160

References:

1. Virt I. Recent advances in semiconducting thin films // Coatings. 2023. V. 13. № 1. P. 79. https://doi.org/ 10.3390/coatings13010079
2. Sawatzki-Park M., Wang H., Kleemann S.J., et al. Highly ordered small molecule organic semiconductor thin-films enabling complex, high-performance multi-junction devices // Chem. Rev. 2023. V. 123. № 13. P. 8232–8250. https://doi.org/10.1021/acs.chemrev.2c00844
3. Kiebooms R., Menon R., Lee K. Handbook of advanced electronic and photonic materials and devices. Chapter 1 — Synthesis, electrical, and optical properties of conjugated polymers. Academic Press, 2001. V. 8. 126 p. https://doi.org/10.1016/b978-012513745-4/50064-0
4. Gong H., Lin J., Sun H. Nanocrystal array engineering and optoelectronic applications of organic small-molecule semiconductors // Nanomaterials. 2023. V. 13. № 14. P. 2087. https://doi.org/10.3390/nano13142087
5. Kaienburg P., Jungbluth A., Habib I., et al. Assessing the photovoltaic quality of vacuum-thermal evaporated organic semiconductor blends // Adv. Mater. 2022. V. 34. № 22: Organic Semiconductors. P. 2107584. https://doi.org/10.1002/adma.202107584
6. Teichler A., Perelaer J., Schubert U.S. Inkjet printing of organic electronics — comparison of deposition techniques and state-of-the-art developments // Mater. Chem. C. 2013. № 10. P. 1910–1925. https://doi.org/ 10.1039/c2tc00255h
7. Rivadeneyra A., López-Villanueva J.A. Recent advances in printed capacitive sensors // Micromachines. 2020. V. 11. № 4. P. 367. https://doi.org/10.3390/ mi11040367
8. Anabestani H., Nabavi S., Bhadra S. Advances in flexible organic photodetectors: Materialsand applications // Nanomaterials. 2022. V. 12. № 21. P. 367. https://doi.org/10.3390/nano12213775
9. Han J., Qi J., Zheng X., et al. Low-bandgap donor-acceptor polymers for photodetectors with photoresponsivity from 300 nm to 1600 nm // Mater. Chem. C. 2017. V. 5. № 1. P. 159–165. https://doi.org/10.1039/c6tc05031j
10. Song J., Kim K.H., Kim E., et al. Lensfree OLEDs with over 50% external quantum efficiency via external scattering and horizontally oriented emitters // Nature Commun. 2018. V. 9. № 1. P. 3207. https://doi.org/10.1038/s41467-018-05671-x
11. Hu S., Tian Y., Lin Y., et al. High-efficiency and longlifetime deep-blue organic light-emitting diode with a maximum external quantum efficiency of 20.6% and CIEy of 0.04 // Dyes and Pigments. 2022. V. 205. P. 110548. https://doi.org/10.1016/j.dyepig.2022.110548
12. Xiaoming Zhao, Xin Liu, Cheng Yang, et al. Power reduction and contrast enhancement based on scene reconstruction for organic light emitting diode displays (Сокращение энергопотребления и улучшение контраста для органических светодиодных дисплеев на основе реорганизации отображаемой сцены) [на англ. яз.] // Оптический журнал. 2019. Т. 86. № 9. С. 38–48. http://doi.org/10.17586/1023-5086-2019-86-09-38-48
 Zhao X., Liu X., Yang C., et al. Power reduction and contrast enhancement based on scene reconstruction for organic light emitting diode displays // J. Opt. Technol. 2019. V. 86. № 9. P. 561–569. https://doi.org/10.1364/JOT.86.000561
13. Xu C., Liu P., Feng C., et al. Organic photodetectors with high detectivity for broadband detection covering UV-vis-NIR // Materials Chem. C. 2022. V. 10. № 15. P. 5787–5796. https://doi.org/10.1039/D2TC00525E
14. Zhao Z., Liu B., Xu C., et al. Highly sensitive all-polymer photodetectors with ultraviolet-visible to nearinfrared photo-detection and their application as an optical switch // Mater. Chem. C. 2021. V. 9. № 16. P. 5349–5355. https://doi.org/10.1039/d1tc00939g
15. Zheng E., Zhang X., Esopi M.R., et al. Narrowband ultraviolet photodetectors based on nanocomposite thin films with high gain and low driving voltage // ACS Appl. Mater. & Interfaces. 2018. V. 10. № 48. P. 41552–41561. https://doi.org/10.1021/acsami.8b13575
16. Armin A., Jansen–van Vuuren R.D., Kopidakis N., et al. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes // Nature Commun. 2015. V. 6. P. 6343. https://doi.org/10.1038/ncomms7343
17. Vanderspikken J., Maes W., Vandewal K. Wavelengthselective organic photodetectors // Adv. Functional Mater. 2021. V. 31. № 36. P. 2104060. https://doi.org/10.1002/adfm.202104060
18. Ren H., Chen J., Li Y., et al. Recent progress in organic photodetectors and their applications // Adv. Sci. 2021. V. 8. № 1. P. 2002418. https://doi.org/10.1002/advs. 202002418
19. Mikaeili A., Matsushima T., Esaki Y., et al. The origin of changes in electrical properties of organic films fabricated at various vacuum-deposition rates // Opt. Mater. 2019. V. 91. P. 93–100. https://doi.org/10.1016/ j.optmat.2019.03.012
20. Liu J., Wang Y., Wen H., et al. Organic photodetectors: Materials, structures, and challenges // Solar RRL. 2020. V. 4. № 7. P. 2000139. https://doi.org/10.1002/ solr.202000139
21. Nath D., Dey P., Joseph A.M., et al. CuPc/C60 heterojunction for high responsivity zero bias organic red light photodetector // Appl. Phys. A. 2020. V. 126. № 8. P. 627. https://doi.org/10.1007/s00339-020-03806-w
22. Wei G., Lu Z., Cai Y., et al. CuPc/C60 heterojunction photodetector with near-infrared spectral response // Mater. Lett. 2017. V. 201. P. 137–139. https://doi.org/10.1016/j.matlet.2017.05.004
23. Wang C., Chen X., Chen F., et al. Organic photodetectors based on copper phthalocyanine films prepared by a multiple drop casting method // Organic Electronics. 2019. V. 66. P. 183–187. https://doi.org/10.1016/j.orgel.2018.12.035
24. Лихоманова С.В., Каманина Н.В. Исследование механизмов оптического ограничения пиридинового комплекса, сенсибилизированного фуллереном С70 и красителем «малахитовый зеленый» // Оптический журнал. 2016. Т. 83. № 6. С. 55–58.
 Likhomanova S.V., Kamanina N.V. Study of optical limiting mechanisms for a pyridine complex sensitized by C70 fullerene and malachite green dye // J. Opt. Technol. 2016. V. 83. № 6. P. 369–371. https://doi. org/10.1364/JOT.83.000369
25. Hou J., Inganäs O., Friend R.H., et al. Organic solar cells based on non-fullerene acceptors // Nature Mater.  2018. V. 17. № 2. P. 119–128. https://doi.org/10.1038/nmat5063
26. Yan C., Barlow S., Wang Z., et al. Non-fullerene acceptors for organic solar cells // Nature Rev. Mater. 2018. V. 3. № 3. P. 18003. https://doi.org/10.1038/ natrevmats.2018.3
27. Кириленко В.В., Жигарновский Б.М., Малкерова И.П. и др. Оптические и эксплуатационные характеристики пленок фторидов и оксидов, полученных испарением в вакууме // Оптический журнал. 2016. Т. 83. № 9. С. 72–77.
 Kirilenko V.V., Zhigarnovskiĭ B.M., Malkerova I.P., et al. Optical and performance properties of fluoride and oxide films produced by vacuum evaporation // J. Opt. Technol. 2016. V. 83. № 9. P. 565–568. https://doi. org/10.1364/JOT.83.000565
28. Mali S.S., Dalavi D.S., Bhosale P.N., et al. Electro-optical properties of copper phthalocyanines (CuPc) vacuum deposited thin films // RSC Advances. 2012. V. 2. № 5. P. 2100–2104. https://doi.org/10.1039/c2ra00670g
29. Farag A.A.M. Optical absorption studies of copper phthalocyanine thin films // Opt. & Laser Technol. 2007. V. 39. № 4. P. 728–732. https://doi.org/10.1016/ j.optlastec.2006.03.011
30. Wei Z., Lim H., Lee G. Guided self-assembly of unidirectionally oriented quasi-one-dimensional 3,4,9,10-perylene-tetracarboxylic-dianhydride chains using surface nanowires // Appl. Phys. Lett. 2011. V. 98. № 7. P. 071912. https://doi.org/10.1063/1.3555428
31. Jomphoak A., Maezono R., Onjun T. Density functional theory of graphene/Cu phthalocyanine composite material // Surface and Coatings Technol. 2016. V. 306. P. 236–239. https://doi.org/10.1016/j.surfcoat.2016.06.015
32. Farag A.A.M., Fadel M. Optical absorption and dispersion analysis of nanocrystalline perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride film prepared by dip coating and its optoelectronic application // Opt. & Laser Technol. 2013. V. 45. P. 356–363. https://doi.org/10.1016/j.optlastec.2012.06.023