ITMO
en/ en

ISSN: 1023-5086

en/

ISSN: 1023-5086

Научно-технический

Оптический журнал

Полнотекстовый перевод журнала на английский язык издаётся Optica Publishing Group под названием “Journal of Optical Technology“

Подача статьи Подать статью
Больше информации Назад

Large-area three-dimensional profilometer based on digital micromirror device

Ссылка для цитирования:

Yunbo Zhang, Aijun Zeng, Huijie Huang, Wenmei Hou Large-area three-dimensional profilometer based on digital micromirror device [на англ. яз.] // Оптический журнал. 2015. Т. 82. № 2. С. 51–56.

 

Yunbo Zhang, Aijun Zeng, Huijie Huang, Wenmei Hou Large-area three-dimensional profilometer based on digital micromirror device [in English] // Opticheskii Zhurnal. 2015. V. 82. № 2. P. 51–56.

Ссылка на англоязычную версию:

Yunbo Zhang, Aijun Zeng, Huijie Huang, and Wenmei Hou, "Large-area three-dimensional profilometer based on digital micromirror device," Journal of Optical Technology. 82(2), 102-107 (2015). https://doi.org/10.1364/JOT.82.000102

Аннотация:

The single pinhole scanning confocal microscope is suffering from scanning speed. This paper studies a large-area profilometer with multiple virtual pinholes. A digital micromirror device comprised of millions of micromirrors generates multiple virtual pinholes which are utilized for parallel scanning. The key parameters affecting the measurement can be configured conveniently by the digital micromirror device controller. The working principles of a digital micromirror device base confocal microscope have been analyzed and a setup has been built up. Tomographic images are acquired and the depth response curves are extracted. A structured silicon sample is measured and three-dimensional results have been reconstructed. The system repeatability is better than 60 nm.

Ключевые слова:

confocal microscope system, digital micromirror device, tomographic image

Благодарность:

Работа выполнена при финансовой поддержке Национального научно-технологического проекта Китая (грант № 2011ZX02402), Международной научно-технологической программы сотрудничества Китая (грант № 2011DFR10010) и Государственной ключевой лаборатории прикладной оптики (грант № Y1Q03FQK06).

Коды OCIS: 170.1790, 180.6900, 110.6880

Список источников:

1. Kim T., Kim S.H., Do D.H., Yoo H.I., and Gweon D.G. Chromatic Confocal Microscopy with a Novel Wavelength Detection Method Using Transmittance // Opt. Exp. 2013. V. 21. № 5. P. 6286–6294.
2. Minsky M. Memoir on Inventing the Confocal Scanning Microscope // Scanning. 1988. V. 10. № 4. P. 128–138.
3. Summers J.A., Yang T., Tuominen M.T., and Hudgings J.A. High Contrast, Depth-Resolved Thermoreflectance Imaging Using a Nipkow Disk Confocal Microscope // Rev. Sci. Instrum. 2010. V. 81. № 1. P. 014902.
4. Tiziani H.J., and Uhde H.M. Three-Dimensional Analysis by a Microlens-Array Confocal Arrangement // Appl. Opt. 1994. V. 33. № 4. P. 567–572.
5. Zhang Y.B., Strube S., Molnar G., Danzebrink H.U., Dai G.L., Bosse H., and Hou W.M. Parallel Large-Range Scanning Confocal Microscope Based on A Digital Micromirror Device // Optik. 2013. V. 124. № 13. P. 1585–1588.
6. Chen L.C., Kao W.C., and Huang Y.T. Autimatic Full-Field 3-D Profilometry Using White Light Concoal Microscopy with DMD-based Fringe Project // Mater. Sci. Forum. 2006. V. 505–507. № 61. P. 361–366.
7. Dudley D., Duncan W., and Slaughter J. Emerging Digital Micromirror Device (DMD) Applications // Proc. SPIE. 2003. V. 4985. P. 14–25.
8. Gu M. Principles of Three-Dimensional Imaging in Concoal Microscopes // Singapore, Textstream, 1996.
9. Corle T.R., Chou C.-H., and Kino G.S. Depth Response of Confocal Optical Microscopes // Opt. Lett. 1986. V. 11. № 12. P. 770–772.
10. Sheppard C.J.R., and Matthews H.J. The Extended-Focus, Auto-Focus and Surface-Profiling Techniques of Confocal Microscope // J. Mod. Opt. 1988. V. 35. № 1. P. 145–154.