DOI: 10.17586/1023-5086-2025-92-04-109-113
УДК: 543.426
Исследование фотолюминесценции неорганических нанокристаллов перовскита CsPbBr3, локализованных в электродинамической ловушке
Семынин М.С., Романова А.В., Татаринов Д.А. Исследование фотолюминесценции неорганических нанокристаллов перовскита CsPbBr3, локализованных в линейной квадрупольной электродинамической ловушке // Оптический журнал. 2025. Т. 92. № 4. С. 107–113. http://doi.org/10.17586/1023-5086-2025-92-04-107-113
Semynin M.S., Romanova A.V., Tatarinov D.A. Photoluminescence study of inorganic CsPbBr3 perovskite nanocrystals localized in a linear quadrupole electrodynamic trap [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 4. P. 107–113. http://doi.org/10.17586/1023-5086-2025-92-04-107-113
электродинамической ловушке. Цель работы. Установление зависимости спектральных характеристик фотолюминесценции нанокристаллов перовскита от среды их локализации: в коллоидном
растворе и при локализации в квадрупольной электродинамической ловушке. Метод. Для доставки нанокристаллов перовскита в рабочую область ловушки использовался метод «Paper Spray».
Распыление с бумажных картриджей проводилось при приложении к ним постоянного напряжения. Спектроскопия локализованных частиц проводилась при возбуждении ультрафиолетовым
лазером с использованием монохроматора и детектора. Основные результаты. Получены спектры фотолюминесценции коллоидного раствора нанокристаллов перовскита и нанокристаллов
перовскита, локализованных в квадрупольной электродинамической ловушке. Установлена зависимость, свидетельствующая о сужении спектра фотолюминесценции локализованных нанокристаллов перовскита по сравнению со спектром фотолюминесценции коллоидного раствора.
Практическая значимость. Полученные в работе результаты могут стать платформой для более
глубокого анализа влияния различных параметров, таких как размер частиц, форма, поверхностные состояния, химический состав, геометрическая ориентация и окружающая среда, на оптические свойства наноматериалов.
нанокристаллы перовскита, квадрупольные электродинамические ловушки, электрораспыление, фотолюминесценция
Благодарность:работа выполнена при поддержке НИР магистров и аспирантов Физико-технического мегафакультета Университета ИТМО. Исследование выполнено при финансовой поддержке гранта Российского научного фонда № 22-42-05002. Авторы выражают благодарность сотрудникам Научного парка СПбГУ за помощь в получении ПЭМ-изображений (проект АААА-А19-119091190094-6)
Коды OCIS: 300.6550, 020.7010, 160.4236
Список источников:1. Wester R., Gianturco F.A., Werner H.-J. Radiofrequency multipole traps: tools for spectroscopy and dynamics of cold molecular ions // Journal of Physics B: Atomic, Molecular and Optical Physics. 2009. V. 42. № 15. P. 154001. https://doi.org/10.1088/0953-4075/42/15/154001
2. Rainò G., Yazdani N., Boehme S.C. Ultra-narrow roomtemperature emission from single CsPbBr3 perovskite quantum dots // Nat. Commun. 2022. V. 13. № 1. P. 2587. https://doi.org/10.1038/s41467-022-30016-0
3. Zhou J., Chizhik A.I., Chu S. Single-particle spectroscopy for functional nanomaterials // Nature. 2020. V. 579. № 7797. P. 41–50. https://doi.org/10.1038/s41586-020-2048-8
4. Cao Z., Hu F., Zhang C. Optical studies of semiconductor perovskite nanocrystals for classical optoelectronic applications and quantum information technologies: A review // Advanced Photonics. 2020. V. 2. № 5. P. 8–10. https://doi.org/10.1117/1.AP.2.5.054001
5. Shen W., Chen J., Wu J. Nonlinear optics in lead halide perovskites: Mechanisms and applications // ACS Photonics. 2021. V. 8. № 1. P. 113–124. https://doi.org/10.1021/acsphotonics.0c01501
6. Liu M., Grandhi G.K., Matta S. Halide perovskite nanocrystal emitters // Advanced Photonics Research 2021. V. 2. № 3. P. 2000118. https://doi.org/10.1002/adpr.202000118
7. Manser J.S., Christians J.A., Kamat P.V. Intriguing optoelectronic properties of metal halide perovskites // Chemical Reviews. 2016. V. 116. № 21. P. 12956–13008. https://doi.org/ 10.1021/acs.chemrev.6b00136
8. Xing G., Mathews N., Sun S. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3 // Science. 2013. V. 342. № 6156. P. 344–347. https://doi.org/10.1126/science.1243167
9. Chiba T., Hayashi Y., Ebe H. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices // Nature Photonics. 2018. V. 12. № 11. P. 681–687. https://doi.org/10.1038/s41566-018-0260-y
10. Yakunin S., Protesescu L., Krieg F. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites // Nature Communications 2015. V. 6. № 1. P. 8056. https://doi.org/10.1038/ncomms9056
11. Utzat H., Sun W., Kaplan A.E.K. Coherent single-photon emission from colloidal lead halide perovskite quantum dots // Science. 2019. V. 363. № 6431. P. 1068–1072. https://doi.org/10.1126/science.aau7392
12. Becker M.A., Scarpelli L., Nedelcu G. Long exciton dephasing time and coherent phonon coupling in CsPbBr2Cl perovskite nanocrystals // Nano Letters. 2018. V. 18. № 12. P. 7546–7551. https://doi.org/10.1021/acs.nanolett.8b03027
13. Rainò G., Becker M.A., Bodnarchuk M.I. Superfluorescence from lead halide perovskite quantum dot superlattices // Nature. 2018. V. 563. № 7733. P. 671–675. https://doi.org/10.1038/s41586-018-0683-0
14. Hillenkamp F. MALDI MS. A Practical Guide to Instrumentation, Methods, and Applications. Wiley Blackwell, 2014. 459 p. 15. Holle A., Haase A., Kayser M. Optimizing UV laser focus profiles for improved MALDI performance // Journal of Mass Spectrometry. 2006. V. 41. № 6. P. 705–716. https://doi.org/10.1002/jms.1041
16. Golovlev V.V., Allman S.L., Garrett W.L. Laser-induced acoustic desorption // International Journal of Mass Spectrometry and Ion Processes. 1997. V. 169. P. 69–78. https://doi.org/10.1016/S0168-1176(97)00209-7
17. Ma X., Zhang Y., Lei H.R. Laser-induced acoustic desorption // MRS Bulletin. 2019. V. 44. № 5. P. 372–381. https://doi.org/10.1557/mrs.2019.105
18. Protesescu L., Yakunin S., Bodnarchuk M.I. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut // Nano Letters. 2015. V. 15. № 6. P. 3692–3696. https://doi.org/10.1021/nl5048779
19. Liu J., Wang H., Manicke N.E. Development, characterization, and application of paper spray ionization // Analytical Сhemistry. 2010. V. 82. № 6. P. 2463–2471. https://doi.org/10.1021/ac902854g