ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.512, 535.44

Contribution of the inverse flexoelectric effect to counterpropagating two-wave mixing of light beams in photorefractive crystals

For Russian citation (Opticheskii Zhurnal):

Шандаров С.М., Шмаков С.С., Зуев П.В., Буримов Н.И., Каргин Ю.Ф., Шепелевич В.В., Ропот П.И., Гуделев В.Г. Вклад обратного флексоэлектрического эффекта во встречное двухволновое взаимодействие световых пучков в фоторефрактивных кристаллах // Оптический журнал. 2013. Т. 80. № 7. С. 5–12.

 

Shandarov S.M., Shmakov S.S., Zuev P.V., Burimov N.I., Kargin Yu.F., Shepelevich V.V., Ropot P.I., Gudelev V.G. Contribution of the inverse flexoelectric effect to counterpropagating two-wave mixing of light beams in photorefractive crystals [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 7. P. 5–12.

For citation (Journal of Optical Technology):

S. M. Shandarov, S. S. Shmakov, P. V. Zuev, N. I. Burimov, Yu. F. Kargin, V. V. Shepelevich, P. I. Ropot, and V. G. Gudelev, "Contribution of the inverse flexoelectric effect to counterpropagating two-wave mixing of light beams in photorefractive crystals," Journal of Optical Technology. 80(7), 409-414 (2013). https://doi.org/10.1364/JOT.80.000409

Abstract:

This paper presents the results of a theoretical analysis of the contribution of the inverse flexoelectric and photoelastic effects to the photorefractive response that accompanies counterpropagating mixing of a steady-state reference wave with a phase-modulated signal wave on reflective holograms in samples of X -cut crystals of symmetry classes 23, ¯43m, ¯42m, 422, 622, 222, and 3m. Experimental studies of such mixing of waves with circular polarization of opposite signs
in a Ba 12 TiO 20 :Ni crystal made it possible to estimate its flexoelectric coefficient.

Keywords:

reflective holograms, photorefractive crystals, inverse flexoelectric effect, adaptive holographic interferometry

Acknowledgements:

This work was carried out as part of a State Contract of the Ministry of Education and Science of the Russian Federation in 2012 (Project No. 7.2647.2011) with the support of Federal Special Program “Scientific and Scientific–Pedagogic Staff of Innovation Russia” (State Contract No. 02.740.11.0553) and with the partial financial support of the Russian Foundation for Basic Research (Project No. 12-02-90038-Bel_a) and the Belarusian Republic Foundation for Basic Research (Project No. F12R-222).

OCIS codes: 190.5330, 190.7070, 090.2880, 050.7330, 050.5080, 050.52298

References:

1. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Nauka, St. Petersburg, 1992).
2. S. I. Stepanov, “Applications of photorefractive crystals,” Rep. Prog. Phys. 57, 39 (1994).
3. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Application of Photorefractive Materials (Clarendon Press, Oxford, 1996).
4. P. Delaye, A. Blouin, D. Drolet, L.-A. De Montmorillon, G. Roosen, and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723 (1997).
5. A. A. Kamshiln, E. Raita, K. Paivasaari, T. Jaaskelainen, and Yu. N. Kulchin, “Photorefractive correlation filtering of time-varying laser speckles for vibration monitoring,” Appl. Phys. Lett. 73, 1466 (1998).
6. A. A. Kamshiln, Y. Iida, S. Ashihara, T. Shimura, and K. Kuroda, “Linear sensing of speckle-pattern displacements using a photorefractive GaP crystal,” Appl. Phys. Lett. 74, 2575 (1999).
7. Yu. N. Kul’chin, O. B. Vitrik, A. A. Kamshilin, and R. V. Romashko, Adaptive Methods of Processing Speckle-Modulated Optical Fields (Fizmatlit, Moscow, 2009).
8. M. D. Ewbank, R. A. Vazquez, R. R. Neurgaonkar, and F. Vachss, “Contradirectional two-beam coupling in absorptive photorefractive materials: application to Rh-doped strontium barium niobate (SBN:60),” J. Opt. Soc. Am. B 12, 87 (1995).
9. G. Cook, C. J. Finnan, and D. C. Jones, “High optical gain using counter-propagating beams in iron and terbium-doped photorefractive lithium niobate,” Appl. Phys. B. 68, 911 (1999).
10. A. Radoua, P. Delaye, R. Pankrath, and G. Roosen, “Characterization of the photorefractive BCT:Rh crystals at 1.06 μm by two-wave mixing,” J. Opt. A 5, S477 (2003).
11. N. Kukhtarev, B. S. Chen, P. Venkateswarlu, G. Salamo, and M. Klein, “Reflection holographic gratings in [111] cut Bi12 TiO 20 crystal for real-time interferometry,” Opt. Commun. 104, 23 (1993).
12. S. Mallick, M. Miteva, and L. Nikolova, “Polarization properties of self-diffraction in sillenite crystals: reflection volume gratings,” J. Opt. Soc. Am. B 14, 1179 (1997).
13. E. Yu. Ageev, S. M. Shandarov, S. Yu. Veretennikov, A. G. Mart’yanov, V. A. Kartashov, A. A. Kamshilin, V. V. Prokof’ev, and V. V. Shepelevich, “Two-beam coupling on the reflection grating in a Bi12 TiO20 crystal,” Kvant. Elektron. 31, 343 (2001) [Quantum Electron. 31, 343 (2001)].
14. S. Di Girolamo, A. A. Kamshilin, R. V. Romashko, Yu. N. Kulchin, and J.-C. Launay, “Fast adaptive interferometer on dynamic reflection hologram in CdTe:V,” Opt. Express 15, 545 (2007).
15. S. M. Shandarov, N. I. Burimov, Yu. N. Kul’chin, R. V. Romashko, A. L. Tolstik, and V. V. Shepelevich, “Dynamic Denisyuk holograms in cubic photorefractive crystals,” Kvant. Elektron. 38, 1059 (2008) [Quantum Electron. 38, 1059 (2008)].
16. A. A. Kamshilin, R. V. Romashko, and Yu. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105, 031101 (2009).
17. A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Yu. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Kvant. Elektron. 41, 847 (2011) [Quantum Electron. 41, 847 (2011)].
18. J. W. Wagner and J. B. Spicer, “Theoretical noise-limited sensitivity of classical interferometry,” J. Opt. Soc. Am. B 4, 1316 (1987).
19. T. J. Hall, M. A. Fiddy, and M. S. Ner, “Detector for an optical-fiber acoustic sensor using dynamic holographic interferometry,” Opt. Lett. 5, 485 (1980).
20. V. L. Indenbom, E. B. Loginov, and M. A. Osipov, “The flexoelectric effect and the structure of crystals,” Kristallografiya. 26, 1157 (1981) [Sov. Phys. Crystallogr. 26, 656 (1981)].
21. J. Y. Fu, W. Zhu, N. Li, and L. E. Cross, “Experimental studies of the converse flexoelectric effect induced by inhomogeneous electric field in a barium strontium titanate composition,” J. Appl. Phys. 100, 024112 (2006).
22. B. Hu, W. Zhu, N. Li, and L. E. Cross, “Flexure mode flexoelectric piezoelectric composites,” J. Appl. Phys. 106, 104109 (2009).
23. S. M. Shandarov, S. S. Shmakov, N. I. Burimov, O. S. Syuvaeva, Yu. F. Kargin, and V. M. Petrov, “Detection of the contribution of the inverse flexoelectric effect to the photorefractive response in a bismuth titanium oxide single crystal,” Pis’ma Zh. Eksp. Teor. Fiz. 95, 699 (2012) [JETP Lett. 95, 618 (2012)].
24. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
25. P. Taebaty and D. Mahgerefteh, “Theory of the photorefractive effect for Bi12 SiO20 and BaTiO3 with shallow traps,” J. Opt. Soc. Am. B 8, 1053 (1991).
26. R. V. Romashko, Yu. N. Kulchin, and A. A. Kamshilin, “Linear phase demodulation via reflection photorefractive holograms,” in Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. Nolte, and J. Xu, eds., Vol. 99 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), pp. 675–680.
27. S. M. Shandarov, A. A. Kolegov, N. I. Burimov, V. I. Bykov, V. M. Petrov, and Yu. F. Kargin, “Two-wave mixing on reflection dynamic gratings in sillenite crystals under phase modulation of signal beam,” Phys. Wave Phenom. 17, No. 1, 39 (2009).
28. S. Shandarov, “Influence of piezoelectric effect on photorefractive gratings in electro-optic crystals,” Appl. Phys. A 55, 91 (1992).
29. A. D. Vuzhva and V. E. Lyamov, “Acoustic activity and other effects caused by spatial dispersion in crystals,” Kristallografiya 22, 131 (1977) [Sov. Phys. Crystallogr. 22, 73 (1977)].
30. V. E. Lyamov, Polarization Effects and Anisotropy of the Mixing of Acoustic Waves in Crystals (Izd. Mosk. Univ, Moscow, 1983).
31. Yu. I. Sirotin and M. P. Shaskol’skaya, Principles of Crystallography (Nauka, Moscow, 1975).
32. V. Petrov, J. Hahn, J. Petter, M. Petrov, and T. Tschudi, “Precise subnanometer control of the position of a macro object by light pressure,” Opt. Lett. 30, 3138 (2005).