ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

Performance evaluation of optical add drop multiplexers with Mach-Zehnder interferometer techniques for dense wavelength division multiplexed system

For Russian citation (Opticheskii Zhurnal):
Sanjeev Dewra and Kaler R. S. Оценка характеристик оптических мультиплексоров на базе интерферометра Маха-Цендера для волоконных систем с плотным спектральным уплотнением // Оптический журнал. 2013. Т. 80. № 9. С. 3–10. http://doi.org/10.17586/1023-5086-2013-80-09-3-10     Sanjeev Dewra and Kaler R. S. Performance evaluation of optical add drop multiplexers with Mach-Zehnder interferometer techniques for dense wavelength division multiplexed system [in English] // Opticheskii Zhurnal. 2013. Т. 80. № 9. Р. 3–10. http://doi.org/10.17586/1023-5086-2013-80-09-3-10
For citation (Journal of Optical Technology):
Sanjeev Dewra and R. S. Kaler, "Performance evaluation of optical add drop multiplexers with Mach–Zehnder interferometer techniques for dense wavelength division multiplexed system," Journal of Optical Technology. 80(9), 526-531 (2013). https://doi.org/10.1364/JOT.80.000526
Abstract:
We evaluate the three Mach-Zehnder interferometer (MZI) techniques of optical add drop multiplexer for DWDM system and investigate the impact of crosstalk obtained at 8 x 10 Gbps with 0.1 nm channel spacing. The Dense wavelength division multiplexing (DWDM) transmission with optical add drop multiplexer (OADM) placed at the 35 km point of a 70 km link has been demonstrated. It is also observed that Mach-Zehnder interferometer-Fiber Bragg Grating (MZI-FBG) based OADM and MZI based OADM provide better results with maximum covered distance (150 km) at channel spacing of 0.1 nm and bit rate of 10 Gbps without using Dispersion Compensating Fiber (DCF) and amplifier and the worst case is found with the Mach-Zehnder interferometer-Semiconductor optical amplifier (MZI-SOA) based OADM. It is also found that the MZI Based OADM is cost effective as compared to MZI-SOA and MZI-FBG Based OADM.
Keywords:

optical add drop multiplexer, bit error rate (ber), quality (q) factor, dwdm system, channel spacing and bit rate

References:

 

1. C. A. Brackett, “Dense wavelength division multiplexing networks: Principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).

2. R. E. Wagner, R. C. Alferness, A. A. M. Saleh, and M. S. Goodman, “MONET—Multiwavelength optical networking,” J. Lightwave Technol. 14, No. 6, 1349–1355 (1996).

3. E. L. Goldstein, L. Eskildsen, and A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett. 6, No. 5, 657–660 (1994).

4. J. Zhou, M. J. O’Mahony, and S. D. Walker, “Analysis of optical crosstalk effects in multi-wavelength switched networks,” IEEE Photon. Technol. Lett. 6, No. 2, 302–305 (1994).

5. K. O. Hill, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).

6. F. Liu, R. J. S. Pedersen, and P. Jeppesen, “Novel 2×2 multiwavelength optical cross connects based on optical add/drop multiplexers,” IEEE Photon. Technol. Lett. 12, No. 9, 1246–1248, (2000).

7. P. T. Neves, Jr., F. Kuller, C. Marconcin, H. J. Kalinowski, J. L. Fabris, and A. A. P. Pohl, in International Conference on Microwave and Optoelectronics Experimental and Simulation Analysis of unbalanced Mach–Zehnder Fiber Bragg Grating OADM, SBMOIEEE MTTS (2005).

8. R. J. S. Pedersen and B. F. Jorgensen, “Impact of coherent crosstalk on usable bandwidth of a grating-MZI-based OADM,” IEEE Photon. Technol. Lett. 10, No. 4, 558–560 (1998).

9. T. Mizuochi, T. Kitayama, K. Shimizu, and K. Ito, “Interferometric crosstalk-free optical add/drop multiplexer using Mach–Zehnder-based fiber gratings,” J. Lightwave Technol. 16, 265–276 (1998).

10. A. M. de Melo, S. Randel, and K. Petermann, “Mach–Zehnder interferometer-based high-speed OTDM add–drop multiplexing,” J. Lightwave Technol. 25, 1017–1026 (2007).

11. P. S. Andre, A. N. Pinto, J. L. Pinto, T. Almeida, and M. Pousa, “Tunable transparent and cost effective optical add drop multiplexer based on fiber bragg grating for DWDM networks,” in Proceeding of Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultra Long-Haul DWDM Transmission and Networking WDM Components, Digest of the LEOS Summer Topical Meeting (2001).

12. P.-C. Peng, C.-H. Chang, H.-H. Lu, Y.-T. Lin, J.-W. Sun, and C.-H. Jiang, “Novel optical add–drop multiplexer for wavelength-division-multiplexing networks,” Opt. Commun. 285, 3093–3099 (2012).

13. R. S. Kaler, T. S. Kamal, and A. K. Sharma, “Simulation results for DWDM systems with ultra-high capacity,” Fiber Integr. Opt. 21, 361–369 (2002).

14. S. Singh and R. S. Kaler, “Wide-band optical wavelength converter based on four-wave mixing using optimized semiconductor optical amplifier,” Fiber Integr. Opt. 25, 213–230 (2006).

15. S. Singh and R. S. Kaler, “Power budget improvement for long-haul WDM transmission with optimum placement of SOAs,” Optik (Jena) 119, No. 7, 329–339 (2008).

16. Y. M. Karfaa, M. Ismail, F. M. Abbou, and S. Shaari, “Effects of crosstalk in an array waveguide grating add/drop router on the performance of WDM networks,” in Proceedings of the IEEE International Conference on Telecommunications and Malaysia International Conference on Communications, Penang, Malaysia (May 2007).

17. S. Singh and R. S. Kaler, “Simulation of DWDM signals using optimum span scheme with cascaded optimized semiconductor optical amplifiers,” Optik(Jena) 118, No. 2, 74–82 (2007).