ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.391.837.681.3]:[621, 681:723

Fiber fluorescence–reflection spectrometer with multiwave excitation

For Russian citation (Opticheskii Zhurnal):

Папаян Г.В., Журба В.М., Кишалов А.А., Петрищев Н.Н., Галагудза М.М. Волоконный флуоресцентно-отражательный спектрометр с многоволновым возбуждением // Оптический журнал. 2014. Т. 81. № 1. С. 38–43.

 

Papayan G.V., Zhurba V.M., Kishalov A.A., Petrishchev N.N., Galagudza M.M. Fiber fluorescence–reflection spectrometer with multiwave excitation [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 1. P. 38–43.

For citation (Journal of Optical Technology):

G. V. Papayan, N. N. Petrishchev, V. M. Zhurba, A. A. Kishalov, and M. M. Galagudza, "Fiber fluorescence–reflection spectrometer with multiwave excitation," Journal of Optical Technology. 81(1), 29-32 (2014). https://doi.org/10.1364/JOT.81.000029

Abstract:

A multipurpose fiber fluorescence–reflection spectrometer with multiwave excitation is intended for biomedical studies, including studies in autofluorescence light. For this use, it is equipped with an LED-based illuminating system possessing a number of technical features: fluorescence excitation by radiation with wavelengths 365, 405, and 450 nm, synchronized switching of blocking filters at the excitation wavelength, and rapid switching of illumination with white light and the exciting radiation. This device makes it possible to observe changes of living objects from diffuse reflection and fluorescence spectra recorded virtually simultaneously. The possibilities of the device are illustrated by using it to study how the autofluorescence-excitation conditions affect the metabolic status of myocardium.

Keywords:

fluorescence spectroscopy, reflection spectroscopy, fluorescence diagnostics, autofluorescence

Acknowledgements:

The authors are grateful to M. É. Kolpakova and S. M. Minasyan for participating in the experiments on ischemia of the rat heart in ex vivo conditions.

OCIS codes: 170.0170, 170.6280, 170.6510, 170.3880, 170.3880, 170.1610, 170.4580

References:

1. V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188 (2000).
2. N. N. Zharkova, D. N. Kozlov, Yu. N. Polivanov, R. L. Pykhov, and V. V. Smirnov, “Laser-excited fluorescence spectrometric system for tissue diagnostics,” Proc. SPIE 2328, 196 (1994).
3. K. A. Horvath, K. T. Schomacker, C. C. Lee, and L. H. Cohn, “Intraoperative myocardial ischemia detection with laser-induced fluorescence,” J. Thorac. Cardiovasc. Surg. 107, 220 (1994).
4. H. A. Zeng, N. MacKinnon, R. W. Cline, and C. E. MacAulay, “In vivo fluorescence spectroscopy of the gastrointestinal tract under multiple wavelength excitation,” Proc. SPIE 2926, 4 (1996).
5. A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation-emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl. Spectrosc. 53, 302 (1999).
6. K. Uk, G. V. Papayan, B. B. Berezin, N. N. Petrishchev, and M. M. Galagudza, “Spectrometer for fluorescence–reflection biomedical research,” Opt. Zh. 80, No. 1, 56 (2013) [J. Opt. Technol. 80, 40 (2013)].
7. B. Chance, B. Schoener, R. Oshino, and F. Itshak, “Oxidation–reduction ratio studies of NADH and flavoprotein fluorescence mitochondria in freeze-trapped samples signals,” J. Biol. Chem. 254, 4764 (1979).
8. S. M. Minasyan, M. M. Galagudza, D. L. Sonin, D. A. Zverev, D. V. Korolyëv, Yu. V. Dmitriev, M. S. Vasil’eva, Yu. N. Grigorova, and T. D. Vlasov, “Technique for perfusing an isolated rat heart,” Region. Krov. Shchenie Mikrotsirk. 8, No. 4, 54 (2009).