ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.243

Investigation of biocompatible complexes of Mn2+-doped ZnS quantum dots with chlorin e6

For Russian citation (Opticheskii Zhurnal):

Вишератина А.К., Мартыненко И.В., Орлова А.О., Маслов В.Г., Гунько Ю.К., Федоров А.В., Баранов А.В. Исследование биосовместимых комплексов квантовых точек ZnS, допированных ионами Mn2+, с хлорином е6 // Оптический журнал. 2014. Т. 81. № 8. С. 31–37.


Visheratina A.K., Martynenko I.V., Orlova A.O., Maslov V.G., Gunko Yu.K., Fwdorov A.V., Baranov A.V. Investigation of biocompatible complexes of Mn2+-doped ZnS quantum dots with chlorin e6 [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 8. P. 31–37.

For citation (Journal of Optical Technology):

A. K. Visheratina, I. V. Martynenko, A. O. Orlova, V. G. Maslov, A. V. Fedorov, A. V. Baranov, and Yu. K. Gun’ko, "Investigation of biocompatible complexes of Mn2+-doped ZnS quantum dots with chlorin e6," Journal of Optical Technology. 81(8), 444-448 (2014).


Complexes of Mn2+-doped ZnS quantum dots with chlorin e6 molecules have been created in which photoexcitation energy transfer from the quantum dots to the chlorin e6 molecules is observed. The optical properties of these complexes have been investigated by steady-state absorption and luminescence spectroscopy. It is established that the photoexcitation energy-transfer efficiency is about 40%. An increase of the relative concentration of chlorin e6 in the complex reduces the luminescence quantum yield of the chlorin e6 associated in the complex with the quantum dots.


semiconductor ZnS quantum dots, chlorin e6, energy transfer

OCIS codes: 160.4236, 300.6500


1. Z. Aguilar, Nanomaterials for Medical Applications (Elsevier Science, Boston, 2012).
2. V. G. Maslov, A. O. Orlova, and A. V. Baranov, “Combination therapy: complexing of QDs with tetrapyrrols and other dyes,” in Photosensitizers in Medicine, Environment, and Security (Springer-Verlag, New York, 2012).
3. A. K. Mishra, ed., Nanomedicine for Drug Delivery and Therapeutics (Wiley, Beverly, Mass., 2013).
4. E. S. Shibu, M. Hamada, N. Murase, and V. Biju, “Nanomaterials formulations for photothermal and photodynamic therapy of cancer,” J. Photochem. Photobiol. C: Photochem. Rev. 15, 53 (2013).
5. H. D. Summers, Nanomedicine (Elsevier Science and Technology, Amsterdam, 2013).
6. A. S. Thakor and S. S. Gambhir, “Nanooncology: the future of cancer diagnosis and therapy,” CA Cancer J. Clin. 63, 395 (2013).
7. A. Tiwari and A. Tiwari, eds., Nanomaterials in Drug Delivery, Imaging, and Tissue Engineering (Wiley, Hoboken, N.J., 2013).
8. V. Biju, S. Mundayoor, R. V. Omkumar, A. Anas, and M. Ishikawa, “Bioconjugated quantum dots for cancer research: present status, prospects and remaining issues,” Biotechnol. Adv. 28, 199 (2010).

9. W. Chen, “Nanoparticle fluorescence-based technology for biological applications,” J. Nanosci. Nanotechnol. 8, 1019 (2008).
10. I. L. Medintz and H. Mattoussi, “Quantum dot-based resonance energy transfer and its growing application in biology,” Phys. Chem. Chem. Phys. 11, 17 (2008).
11. C. E. Probst, P. Zrazhevskiy, V. Bagalkot, and X. Gao, “Quantum dots as a platform for nanoparticle drug delivery vehicle design,” Adv. Drug Deliv. Rev. 65, 703 (2013).
12. A. C. Samia, X. Chen, and C. Burda, “Semiconductor quantum dots for photodynamic therapy,” J. Am. Chem. Soc. 125, 15736 (2003).
13. E. Yaghini, A. M. Seifalian, and A. J. MacRobert, “Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy,” Nanomedicine 4, 353 (2009).
14. A. L. Efros, D. J. Lockwood, and L. Tsybeskov, eds., Semiconductor Nanocrystals: From Basic Principles to Applications (Kluwer Academic/Plenum Publishers, New York, 2004).
15. A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Yu. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, St. Petersburg, 2011).
16. S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University Press, Cambridge, 1998).
17. H. D. Duong and J. I. Rhee, “Singlet oxygen production by fluorescence resonance energy transfer (FRET) from green and orange CdSe/ZnS QDs to protoporphyrin IX (PpIX),” Chem. Phys. Lett. 501, 496 (2011).
18. A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126, 301 (2004).
19. L. Dworak, V. V. Matylitsky, T. Ren, T. Basch, and J. Wachtveitl, “Acceptor concentration dependence of Förster resonance energy transfer dynamics in dye-quantum dot complexes,” J. Phys. Chem. C 118, 4396 (2014).
20. C. Fowley, N. Nomikou, A. P. McHale, P. A. McCarron, B. McCaughan, and J. F. Callan, “Water-soluble quantum dots as hydrophilic carriers and two-photon excited energy donors in photodynamic therapy,” J. Math. Chem. 22, 6456 (2012).
21. L. Li, J. F. Zhao, N. Won, H. Jin, S. Kim, and J. Y. Chen, “Quantum dot-aluminum phthalocyanine conjugates perform photodynamic reactions to kill cancer cells via fluorescence resonance energy transfer,” Nanoscale Res. Lett. 7, 386 (2012).
22. J. Ma, J. Y. Chen, M. Idowu, and T. Nyokong, “Generation of singlet oxygen via the composites of water-soluble thiol-capped CdTe quantum dots-sulfonated aluminum phthalocyanines,” J. Phys. Chem. B 112, 4465 (2008).
23. I. V. Martynenko, A. O. Orlova, V. G. Maslov, A. V. Baranov, A. V. Fedorov, and M. Artemyev, “Energy transfer in complexes of water-soluble quantum dots and chlorin e6 molecules in different environments,” Beilstein J. Nanotechnol. 4, 895 (2013).
24. A. O. Orlova, I. V. Martynenko, V. G. Maslov, A. V. Fedorov, Y. K. Gun’ko, and A. V. Baranov, “Investigation of complexes of CdTe quantum dots with the AlOH-sulphophthalocyanine molecules in aqueous media,” J. Phys. Chem. C 117, 23425 (2013).
25. Z.-D. Qi, D.-W. Li, P. Jiang, F.-L. Jiang, Y.-S. Li, Y. Liu, W.-K. Wong, and K.-W. Cheah, “Biocompatible CdSe quantum dot-based photosensitizer under two-photon excitation for photodynamic therapy,” J. Math. Chem. 21, 2455 (2011).
26. A. Skripka, J. Valanciunaite, G. Dauderis, V. Poderys, R. Kubiliute, and R. Rotomskis, “Two-photon excited quantum dots as energy donors for photosensitizer chlorin e6,” J. Biomed. Opt. 18, 078002 (2013).
27. X. Zhang, Z. Liu, L. Ma, M. Hossu, and W. Chen, “Interaction of porphyrins with CdTe quantum dots,” Nanotechnology 22, 195501 (2011).
28. P. Yang and M. Bredol, “Surface passivation and photoluminescence of Mn-doped ZnS nanocrystals,” Res. Lett. Mater. Sci. 2008, 506065 (2008).
29. M. Geszke-Moritz, H. Piotrowska, M. Murias, L. Balan, M. Moritz, J. Lulek, and R. Schneider, “Thioglycerol-capped Mn-doped ZnS quantum dot bioconjugates as efficient two-photon fluorescent nano-probes for bioimaging,” J. Mater. Chem. B 1, 698 (2013).
30. D. V. Vassiliev and A. N. Stukov, “Enhancing photoditazine-mediated photodynamic therapy of tumours,” Proc. SPIE 5973, 59730D (2005).
31. H.-Y. Chen, S. Maiti, and D. H. Son, “Doping location-dependent energy transfer dynamics in Mn-doped CdS/ZnS nanocrystals,” ACS Nano 6, No. 1, 583 (2012).
32. S. Cao, J. Zheng, J. Zhao, L. Wang, F. Gao, G. Wei, R. Zeng, L. Tian, and W. Yang, “Highly efficient and well-resolved Mn2+ ion emission in MnS/ZnS/CdS quantum dots,” J. Mater. Chem. C 1, 2540 (2013).
33. J. H. Yu, S. H. Kwon, Z. Petrasek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359 (2013).
34. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2007).