ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 537.9

Optical transitions in a complex valence band of semiconductor nanocrystals

For Russian citation (Opticheskii Zhurnal):

Турков В.К., Леонов М.Ю., Рухленко И.Д., Баранов А.В., Фёдоров А.В. Оптические переходы в сложной валентной зоне полупроводниковых нанокристаллов // Оптический журнал. 2015. Т. 82. № 11. С. 36–42.


Turkov V.K., Leonov M.Yu., Rukhlenko I.D., Baranov A.V., Fedorov A.V. Optical transitions in a complex valence band of semiconductor nanocrystals [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 11. P. 36–42. 

For citation (Journal of Optical Technology):

V. K. Turkov, M. Yu. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, "Optical transitions in a complex valence band of semiconductor nanocrystals," Journal of Optical Technology. 82(11), 743-748 (2015).


Intraband optical transitions in the complex valence band of spherical nanocrystals based on semiconductors with Td and Oh symmetries have been studied. The energy spectrum of the holes is calculated, using k·p perturbation theory. Analytical expressions are obtained for the hole–photon-interaction matrix elements. It is shown that the size dependence of these matrix elements is determined by the states that participate in the transitions. The selection rules obtained here permit transitions between a large number of states with various symmetries that are forbidden in the conduction zone. The radiative lifetime of the states in the valence band are computed as a function of the radius of the nanocrystal, and it is shown that it can vary in a wide range from 10−12 to 10−3 s.


quantum dots, band theory, intraband absorption, radiative lifetime


This work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation (Grant 14.B25.31.0002 and State Job No. 3.17.2014/K). The Ministry of Education and Science of the Russian Federation is also supporting M. Yu. Leonov by means of a stipend of the President of the Russian Federation for young scientists and graduate students (2013–15).

OCIS codes: 160.4236, 300.6500


1. A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Yu. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, St. Petersburg, 2011).
2. P. Bhattacharya, S. Ghosh, and A. Stiff-Roberts, “Quantum-dot optoelectronic devices,” Annu. Rev. Mater. Res. 34, 1 (2004).
3. A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, M. Yu. Leonov, A. V. Baranov, Yu. K. Gun’ko, and A. V. Fedorov, “Harnessing the shape-induced optical anisotropy of a semiconductor nanocrystal: a new type of intraband absorption spectroscopy,” J. Phys. Chem. C 118, 2867 (2014).
4. E. Lhuillier, S. Keuleyan, H. Liu, and P. Guyot-Sionnest, “Mid-IR colloidal nanocrystals,” Chem. Mater. 25, 1272 (2013).
5. D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110, 389 (2010).
6. N. Vukmirovic, Z. Ikonic, V. D. Jovanovic, D. Indjin, and P. Harrison, “Optically pumped intersublevel midinfrared lasers based on InAs–GaAs quantum dots,” IEEE J. Quantum Electron. 41, 1361 (2005).
7. J. Phillips, “Evaluation of the fundamental properties of quantum-dot infrared detectors,” J. Appl. Phys. 91, 4590 (2002).
8. R. Tamaki, Y. Shoji, Y. Okada, and K. Miyano, “Spectrally resolved intraband transitions on two-step photon absorption in InGaAs/GaAs quantum-dot solar cell,” Appl. Phys. Lett. 105, 073118 (2014).
9. Z. Deng, K. S. Jeong, and P. Guyot-Sionnest, “Colloidal quantum dots intraband photodetectors,” ACS Nano 8, 11707 (2014).
10. A. V. Fedorov, A. V. Baranov, and K. Inoue, “Two-photon transitions in systems with semiconductor quantum dots,” Phys. Rev. B 54, 8627 (1996).
11. X. Feng, Y. L. Ang, J. He, C. W. J. Beh, H. Xu, W. S. Chin, and W. Ji, “Three-photon absorption in semiconductor quantum dots: experiment,” Opt. Express 16, 6999 (2008).
12. A. S. Baimuratov, V. K. Turkov, I. D. Rukhlenko, and A. V. Fedorov, “Shape-induced anisotropy of intraband luminescence from a semiconductor nanocrystal,” Opt. Lett. 37, 4645 (2012).
13. M. Yu. Leonov, A. V. Baranov, and A. V. Fedorov, “Transient intraband light absorption by quantum dots: pump-probe spectroscopy,” Opt. Spectrosc. 111, 798 (2011).
14. E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous sizedependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6, 8913 (2012).
15. A. V. Fedorov, A. V. Baranov, and Y. Masumoto, “Coherent control of optical-phonon-assisted resonance secondary emission in semiconductor quantum dots,” Opt. Spectrosc. 93, 52 (2002).
16. H. Tu, K. Mogyorosi, and D. F. Kelley, “Intraband spectroscopy and photophysics in GaSe nanoparticles,” Phys. Rev. B 72, 205306 (2005).
17. A. V. Baranov, V. Davydov, A. V. Fedorov, H. W. Ren, S. Sugou, and Y. Masumoto, “Coherent control of stress-induced InGaAs quantum dots by means of phonon-assisted resonant photoluminescence,” Phys. Status Solidi B 224, 461 (2001).
18. A. V. Fedorov, A. V. Baranov, and Y. Masumoto, “Acoustic phonon problem in nanocrystal–dielectric-matrix systems,” Solid State Commun. 122, No. 3–4, 139 (2003).
19. I. D. Rukhlenko and A. V. Fedorov, “Penetration of electric fields induced by surface phonon modes into the layers of a semiconductor heterostructure,” Opt. Spectrosc. 101, 253 (2006).
20. I. D. Rukhlenko and A. V. Fedorov, “Propagation of electric fields induced by optical phonons in semiconductor heterostructures,” Opt. Spectrosc. 100, 238 (2006).
21. A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and Y. Masumoto, “New many-body mechanism of intraband carrier relaxation in quantum dots embedded in doped heterostructures,” Solid State Commun. 128, 219 (2003).
22. A. V. Fedorov and A. V. Baranov, “Relaxation of charge carriers in quantum dots with the involvement of plasmon–phonon modes,” Semiconductors 38, 1065 (2004).
23. A. V. Fedorov and A. V. Baranov, “Intraband carrier relaxation in quantum dots mediated by surface plasmon-phonon excitations,” Opt. Spectrosc. 97, 56 (2004).
24. S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Double quantum-dot photoluminescence mediated by incoherent reversible energy transport,” Phys. Rev. B 81, 245303 (2010).
25. S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Electron–electron scattering in a double quantum dot: effective-mass approach,” J. Chem. Phys. 133, 104704 (2010).
26. G. Allan and C. Delerue, “Confinement effects in PbSe quantum wells and nanocrystals,” Phys. Rev. B 70, 245321 (2004).
27. J. S. de Sousa, J.-P. Leburton, V. N. Freire, and E. F. da Silva, “Intraband absorption and Stark effect in silicon nanocrystals,” Phys. Rev. B 72, 155438 (2005).
28. T. Puangmali, M. Califano, and P. Harrison, “Interband and intraband optical transitions in InAs nanocrystal quantum dots: a pseudopotential approach,” Phys. Rev. B 78, 245104 (2008).
29. V. K. Turkov, S. Yu. Kruchinin, and A. V. Fedorov, “Intraband optical transitions in semiconductor quantum dots: radiative electronic excitation lifetime,” Opt. Spectrosc. 110, 740 (2011).
30. S. C. Kuhn and M. Richter, “Excitonic effects in intraband quantum-dot spectroscopy: formation of bound continuum excitons,” Phys. Rev. B 90, 125308 (2014).
31. B. D. Geyter, A. J. Houtepen, S. Carrillo, P. Geiregat, Y. Gao, S. ten Cate, J. M. Schins, D. V. Thourhout, C. Delerue, L. D. A. Siebbeles, and Z. Hens, “Broadband and picosecond intraband absorption in lead-based colloidal quantum dots,” ACS Nano 6, 6067 (2012).
32. A. A. Bakulin, S. Neutzner, H. J. Bakker, L. Ottaviani, D. Barakel, and Z. Chen, “Charge trapping dynamics in PbS colloidal quantum dot photovoltaic devices,” ACS Nano 7, 8771 (2013).
33. P. Sippel, W. Albrecht, D. Mitoraj, R. Eichberger, T. Hannappel, and D. Vanmaekelbergh, “Two-photon photoemission study of competing Auger and surface-mediated relaxation of hot electrons in CdSe quantum-dot solids,” Nano Lett. 13, 1655 (2013).
34. A. L. Efros and M. Rosen, “Quantum size level structure of narrow-gap semiconductor nanocrystals: effect of band coupling,” Phys. Rev. B 58, 7120 (1998).
35. E. P. Pokatilov, V. A. Fonobedov, V. M. Fomin, and J. T. Devreese, “Development of an eight-band theory for quantum-dot heterostructures,” Phys. Rev. B 64, 245328 (2001).
36. P. V. Avramov, A. A. Kuzubov, A. S. Fedorov, P. B. Sorokin, F. N. Tomilin, and Y. Maeda, “Density-functional theory study of the electronic structure of thin Si/SiO2 quantum nanodots and nanowires,” Phys. Rev. B 75, 205427 (2007).
37. H.-L. Chou, C.-H. Tseng, K. C. Pillai, B.-J. Hwang, and L.-Y. Chen, “Surface-related emission in CdS quantum dots. DFT simulation studies,” J. Phys. Chem. C 115, 20856 (2011).
38. G. B. Grigoryan, E. M. Kazaryan, A. L. Efros, and T. V. Yazeva, “Hole quantization and absorption edge in spherical microcrystals of semiconductors with complex valence-band structure,” Sov. Phys. Solid State 32, 1031 (1990).
39. A. I. Ekimov, I. A. Kudryavtsev, A. L. Efros, T. V. Yazeva, F. Hache, M. C. Schanne-Klein, A. V. Rodina, D. Ricard, and C. Flytzanis, “Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions,” J. Opt. Soc. Am. 10, 100 (1993).
40. H. Fu, L.-W. Wang, and A. Zunger, “Applicability of the k-p method to the electronic structure of quantum dots,” Phys. Rev. B 57, 9971 (1998).
41. U. Banin, C. J. Lee, A. A. Guzelian, A. V. Kadavanich, A. P. Alivisatos, W.
Jaskolski, G. W. Bryant, A. L. Efros, and M. Rosen, “Size-dependent electronic level structure of InAs nanocrystal quantum dots: test of multiband effective-mass theory,” J. Chem. Phys. 109, 2306 (1998).
42. A. V. Fedorov, A. V. Baranov, A. Itoh, and Y. Masumoto, “Renormalization of energy spectrum of quantum dots under vibrational resonance conditions,” Semiconductors 35, 1390 (2001).
43. S. Yu. Kruchinin and A. V. Fedorov, “Renormalization of the energy spectrum of quantum dots under vibrational resonance conditions: persistent hole-burning spectroscopy,” Opt. Spectrosc. 100, 41 (2006).
44. A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Yu. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).