ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.375.8, 535-15, 621.372.632, 615.47:617-089, 617.7, 616.8-089, 616.1

Mid-IR laser for high-precision surgery

For Russian citation (Opticheskii Zhurnal):

Серебряков В.А., Бойко Э.В., Калинцев А.Г., Корнев А.Ф., Наривончик А.С., Павлова А.Л. Лазер среднего инфракрасного диапазона спектра для прецизионной хирургии // Оптический журнал. 2015. Т. 82. № 12. С. 3–13.


Serebryakov V.A., Boyko E.V., Kalintsev A.G., Kornev A.F., Narivonchik A.S., Pavlova A.L. Mid-IR laser for high-precision surgery [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 12. P. 3–13.

For citation (Journal of Optical Technology):

V. S. Serebryakov, É. V. Boĭko, A. G. Kalintsev, A. F. Kornev, A. S. Narivonchik, and A. L. Pavlova, "Mid-IR laser for high-precision surgery," Journal of Optical Technology. 82(12), 781-788 (2015).


We have studied the potential for using mid-IR lasers in high-precision non-traumatic surgery, validated the parameters and optical design of a tunable solid-state laser with parametric conversion of radiation to the protein absorption band (6–8 μm), and tested the key components of such a laser experimentally. A pulsed-periodic Ho3+:YLF laser (λ=2.051 μm), pumped by a Tm fiber laser (λ=1.94 μm), with pulse energies of up to 80 mJ (at a frequency of 100 Hz) and 50 mJ (at a frequency of 1000 Hz) was developed. The laser had a pulse width of 20 ns, a beam quality M2 of 1.5, and a laser optical efficiency of 30%. The radiation from the Ho:YLF laser was parametrically converted to the mid-IR (3–6 μm) using ZnGeP2 (ZGP) nonlinear crystals. The total signal + idler wave energies of up to 100 mJ at pulse repetition rates of 100 Hz (and a conversion efficiency of 40%) were achieved using a two-cavity ZGP optical parametric oscillator system and a parametric amplifier (paramp).


mid-IR lasers, parametric oscillator, laser ablation, high-precision surgery


This work was funded by the Russian Federation Ministry of Education and Science (Contract No. 14.579.21.0015), by government funding provided to leading Russian Federation universities (Subsidy 074-U01), and by Russian Federation Presidential Grant for Government Support of Leading Scientific Schools No. NShch 1364.201.

OCIS codes: 140.3070 , 170.1020, 170.3890, 190.4970


1. R. F. Haglund, “Applications of free electron lasers in biological sciences, medicine and material science,” in Photon-Based Nanoscience and Nanobiotechnology, J. J. Dubowski and S. Tanev, eds. (Springer, NY, 2006), pp. 175–203.
2. V. A. Serebryakov, É. V. Boĭko, N. N. Petrishchev, and A. V. Yan, “Medical applications of mid-IR lasers. Problems and prospects,” J. Opt. Technol. 77(1), 6–17 (2010) [Opt. Zh. 77, 9–23 (2010)].
3. T. C. Hutchens, A. Darafsheh, A. Fardad, A. N. Antoszyk, H. S. Ying, V. N. Astratov, and N. M. Fried, “Detachable microsphere scalpel tips for potential use in ophthalmic surgery with the erbium:YAG laser,” J. Biomed. Opt. 19(1), 018003 (2014).
4. M. J. Shah, J. H. Shen, and K. M. Joos, “Endoscopic free electron laser technique development for minimally invasive optic nerve sheath fenestration,” Lasers Surg. Med. 39, 589–596 (2007).
5. Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
6. M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid-infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39, 230–236 (2007).
7. K. A. Awazu, K. Ishii, and H. Hazama, “Infrared laser therapy using IR absorption of biomolecules,” J. Phys. 276, 012011 (2011).
8. A. N. Soldatov, S. Mirza, Ju. P. Polunin, A. S. Shumeyko, and I. C. Costadinov, “Multiwavelength metal vapor laser systems for applied spectroscopy of the atmosphere,” J. Appl. Spectrosc. 81(6), 1025–1029 (2015).
9. K. Hashimura, K. Ishii, N. Akikusa, T. Edamura, H. Yoshida, and K. Awazu, “Coagulation and ablation of biological soft tissue by quantum  cascade laser with peak wavelength of 5.7 μm,” J. Innovative Opt. Health Sci. 7(3), 1450029 (2014).
10. Y. Huang and J. U. Kang, “Corneal tissue ablation using 6.1 μm quantum cascade laser,” Proc. SPIE 8209, 82091W (2012).
11. G. Stoeppler, M. Schellhorn, and M. Eichhorn, “Enhanced beam quality for medical applications at 6.45 μm by using a RISTRA ZGP OPO,” Laser Phys. 22(6), 1095–1098 (2012).
12. G. Stoeppler, M. Schellhorn, and M. Eichhorn, “Ho 3+ :LLF MOPA pumped RISTRA ZGP OPO at 3–5 μm,” Proc. SPIE 8604, 86040I (2013).

13. V. Petrov, “Mid-infrared solid-state laser systems for minimally invasive surgery,” Final Project Report (Project MIRSURG, Berlin, 2012), Grant Agreement Number 224042.
14. A. G. Kalintsev, U. V. Katsev, A. F. Kornev, A. S. Narivonchik, D. O. Oborotov, A. L. Pavlova, V. P. Pokrovsky, V. A. Serebryakov, and V. K. Stupnikov, “100 mJ/100 Hz mid-IR laser source,” in Technical Program for the 16th International Conference on Laser Optics (St. Petersburg, June/July 2014), paper ThR1-23, p. 35.
15. A. F. Kornev, A. S. Narivonchik, A. L. Pavlova, and V. A. Serebryakov, “High-efficiency 50 mJ/1000 Hz Ho:YLF MOPA with multipass amplifier,” in Technical Program for the 16th International Conference on Laser Optics (St. Petersburg, June/July 2014), paper WeR1-p10, p. 30.
16. E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85(8), 4213–4221 (1999).
17. K. A. Awazu, K. Ishii, and H. Hazama, “Infrared laser therapy using IR absorption of biomolecules,” J. Phys. 276, 012011 (2011).
18. M. S. Hutson, B. Ivanov, A. Jayasinghe, G. Adunas, Y. Xiao, M. Guo, and J. Kozub, “Interplay of wavelength, fluence, and spot-size in free-electron laser ablation of cornea,” Opt. Express 17(12), 9840–9850 (2009).
19. G. Arisholm, O. Nordseth, and G. Rustad, “Optical parametric master oscillator and power amplifier for efficient conversion of high-energy pulses with high beam quality,” Opt. Express 12, 4189–4197 (2004).
20. M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, and K. Stenersen, “Tunable high-pulse-energy mid-infrared laser source based on optical parametric amplification in ZnGeP2,” Proc. SPIE 7115, 71150Q (2008).
21. A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE 6875, 687507 (2008).
22. L. Greenemeier, “Will a bendable laser scalpel make the cut?” Sci. Am., March 4, 2009 [Online]. Available:‑laser‑scalpel/.
23. H. Strauss, D. Preussler, O. Collett, M. Esser, C. Jacobs, C. Bollig, W. Koen, and K. Nyangaza, “330 mJ, 2 μm, single frequency, Ho:YLF slab amplifier,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA4.
24. A. Dergachev, “23-dB Ho:YLF amplifier,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WB17.
25. K. Schmidt, C. Reiter, H. Foss, F. Massmann, and M. D. Ostermeyer, “Ho:YAG (2.09 μm) laser system pumped by cw thulium fiber laser (1.9 μm) with >120 mJ pulse energy at 100 Hz repetition rate,” Proc. SPIE 8543, 8543 (2012).
26. K. Scholle, S. Lamrini, F. Gatzemeier, P. Koopmann, and P. Fuhrberg, “In-band diode pumped high power Ho:YLF laser,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC), Munich (May 12–16, 2013), paper CA 3-4.
27. A. Hemming, J. Richards, A. Davidson, N. Carmody, S. Bennetts, N. Simakov, and J. Haub, “99-W mid-IR operation of a ZGP OPO at 25% duty cycle,” Opt. Express 21(8), 10062–10069 (2013).
28. E. Lippert, H. Fonnum, G. Arisholm, and K. Stenersen, “A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express 18(25), 26475–26483 (2010).
29. S. Bigotta, G. Stoppler, J. Schoner, M. Schellhorn, and M. Eichhorn, “Novel non-planar ring cavity for enhanced beam quality in high-pulse-energy optical parametric oscillators,” Opt. Mater. Express 4(3), 411–423 (2014).