ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.39

Study of the optical properties of lead zirconate–titanate layers obtained by magnetron sputtering

For Russian citation (Opticheskii Zhurnal):

Мавлянов Р.К., Виноградов А.Я., Толмачёв В.А. Исследование оптических свойств слоёв цирконат-титаната свинца, получаемых методом магнетронного распыления // Оптический журнал. 2015. Т. 82. № 2. С. 3–8.

 

Mavlyanov R.K., Vinogradov A.Ya., Tolmachev V.A. Study of the optical properties of lead zirconate–titanate layers obtained by magnetron sputtering [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 2. P. 3–8.

For citation (Journal of Optical Technology):

R. K. Mavlyanov, A. Ya. Vinogradov, and V. A. Tolmachev, "Study of the optical properties of lead zirconate–titanate layers obtained by magnetron sputtering," Journal of Optical Technology. 82(2), 64-67 (2015). https://doi.org/10.1364/JOT.82.000064

Abstract:

Lead zirconate–titanate films to be used as the active and adhesion layers in a ferroelectric structure have been studied. The layers are obtained by magnetron sputtering on platinum-coated silicon substrates, and spectral ellipsometry is used to determine their optical characteristics. The ellipsomeric angles were measured in the 250–900-nm wavelength range, and the thicknesses (213 and 54 nm) and the dispersion of the optical constants (the refractive and absorption indices) were determined on the basis of two optical models of the layers.

Keywords:

dispersion of optical constants, magnetron sputtering, spectral ellipsometry, lead zirconate–titanate

Acknowledgements:

The authors are grateful to Academician I. V. Grekhov for valuable comments in discussing this article, to N. A. Feoktistov for measurements on the atomic-force microscope, and to I. B. Korkin for help in designing and fabricating the process apparatus.

OCIS codes: 310.6860, 240.2130

References:

1. K. A. Vorotilov and A. S. Sigov, “Ferroelectric memory,” Fiz. Tverd. Tela 54, 843 (2012) [Phys. Solid State 54, 894 (2012)].
2. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, “Ferroelectric thin films: Review of materials, properties, and applications,” Appl. Phys. 100, 051606 (2006).
3. A. A. Vasil’ev, A. V. Sokolov, and A. M. Baranov, “Method of depositing platinum layers on a substrate,” Russian Patent No. 2,426,193 (2010).
4. P. V. Afanas’ev, V. P. Afanas’ev, I. V. Grekhov, L. A. Delimova, G. P. Kramar, D. V. Mashovets, and A. A. Petrov, “Ferroelectric element for a recording device with optical data readout,” Russian Patent No. 2,338,284 (2007).
5. V. A. Vol’pyas and A. B. Kozyrev, “Method of depositing thin ferroelectric films based on complex oxides by the method of ion-plasma sputtering,” Russian Patent No. 2,434,078 (2009).
6. A. Ya. Vinogradov, R. K. Mavlyanov, and D. A. Kalinin, “Substrate for the deposition of thin-film ferroelectric heterostructures,” Russian Patent on a useful model No. 131234 (2013), http://bankpatentov.ru/node/381884.
7. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Mir, Moscow, 1981; North Holland Publishing Company, Amsterdam, 1977).
8. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, New York, 1985).
9. V. A. Shvets, E. V. Spesivtsev, S. V. Rykhlitskiı˘, and N. N. Mikhaı˘lov, “Ellipsometry—A precision method of monitoring thin-film structures with subnanometer resolution,” Ross. Nanotekh. 4, 201 (2009).
10. M. P. Moreta, M. A. C. Devillers, K. Worhoff, and P. K. Larsen, “Optical properties of PbTiO3, PbZrxTi1−xO3 , and PbZrO3 films deposited by metal-organic chemical vapor on SrTiO3 ,” Appl. Phys. 92, 468 (2002).
11. D. A. G. Bruggeman, “Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. (Leipzig) 416, 636 (1935).
12. I. Aulika, A. Dejneka, S. Mergan, M. Crepaldi, L. Jastrabik, Q. Zhang, A. Bencan, M. Kosec, and V. Zauls, “Compositional and optical gradient in films of PbZrxTi1−xO3 (PZT) family,” in Ferroelectrics—Physical Effects, M. Lallart, ed. (InTech, 2011), http://www.intechopen.com/books/ferroelectrics‑physical‑effects/compositional‑and‑optical‑gradient‑in‑films‑of‑pbzrxti1‑xo3‑pzt‑family.
13. P. D. Thacher, “Refractive index and surface layers of ceramic (Pb, La) (ZrTi)O3 compounds,” Appl. Opt. 16, 3210 (1977).
14. H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, and T. D. Kang, “Visible-ultraviolet spectroscopic ellipsometry of lead zirconate titanate thin films,” Appl. Phys. Lett. 86, 262902 (2005).
15. K. Vorotilov, A. Sigov, D. Seregin, Yu. Podgorny, O. Zhigalina, and D. Khmelenin, “Crystallization behaviour of PZT in multilayer heterostructures,” Phase Transit. 86, 1152 (2013).