ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 539.21, 535.33

Effect of diode–diode interactions on the characteristics of the absorption spectra of granular films and colloidal suspensions of gold and silver nanoparticles

For Russian citation (Opticheskii Zhurnal):

Шаганов И.И., Перова Т.С. Влияние диполь-дипольных взаимодействий на характеристики спектров поглощения гранулированных пленок и коллоидных растворов наночастиц золота и серебра // Оптический журнал. 2015. Т. 82. № 4. С. 3–13.

 

Shaganov I.I., Perova T.S. Effect of diode–diode interactions on the characteristics of the absorption spectra of granular films and colloidal suspensions of gold and silver nanoparticles [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 4. P. 3–13.

For citation (Journal of Optical Technology):

I. I. Shaganov and T. S. Perova, "Effect of diode–diode interactions on the characteristics of the absorption spectra of granular films and colloidal suspensions of gold and silver nanoparticles," Journal of Optical Technology. 82(4), 197-204 (2015). https://doi.org/10.1364/JOT.82.000197

Abstract:

This paper discusses the possibility of using the concepts of intermolecular-interaction theory and the effective-field-dispersion method to model how resonance and inductive-resonance dipole–dipole interactions affect the frequencies of the plasmon-absorption bands of granular films and colloidal suspensions of gold and silver nanoparticles. It is shown that the results of theoretical calculations carried out in terms of the quasi-static approximation agree well with the available experimental data.

Keywords:

absorption spectra of gold and silver nanoparticles, effective field, dipole–dipole interactions

Acknowledgements:

The authors are grateful to the Government of the Russian Federation (Grant 074-U01) for financial support.

OCIS codes: 310.6188, 300.6550, 160.4236, 310.3915, 300.6390

References:

1. V. V. Klimov, “Nanoplasmonics,” Usp. Fiz. Nauk 178, 875 (2008) [Phys.–Usp. 51, 839 (2008)].
2. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, No. 5808, 47 (2007).
3. A. Wokaun, “Surface enhancement of optical fields. Mechanism and applications,” Mol. Phys. 56, No. 1, 1 (1985).
4. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
5. T. Ung, L. M. Liz-Marzán, and P. Mulvaney, “Optical properties of thin films of Au and SiO2 particles,” Phys. Chem. B 105, 3441 (2001).
6. L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir 22, No. 1, 32 (2006).
7. A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and application,” New J. Chem. 30, 1121 (2006).
8. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett. 25, 372 (2000).
9. J. J. Mock, D. R. Smith, and S. Shultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3, 485 (2003).
10. U. Kreibig and M. Volmer, Optical Properties of Metal Clusters (Springer-Verlag, New York, 1995).
11. R. W. Cohen, G. D. Cody, M. D. Coutt, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8, 3689 (1973).
12. G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: the nonscattering Maxwell–Garnett limit,” J. Phys. Chem. B 101, 1548 (1997).
13. J. E. Spanier and I. P. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model infrared reflection of porous SiC films,” Phys. Rev. B 61, 10437 (2000).
14. C. A. Foss, Jr., G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98, 2963 (1994).
15. I. Shaganov, T. Perova, V. Melnikov, S. Dyakov, and K. Berwick, “The size effect on the infrared spectra of condensed media under conditions of 1D, 2D and 3D dielectric confinement,” J. Phys. Chem. C 114, 16071 (2010).
16. I. I. Shaganov, T. S. Perova, R. A. Moore, and K. Berwick, “Effect of the internal field on the IR absorption spectra of small particles in the case of 3D, 2D and 1D size confinement,” J. Phys. Chem. B 109, 9885 (2005).
17. N. G. Bakhshiev, O. P. Girin, and V. S. Libov, “Relation between the observed and true absorption spectra of molecules in a solid medium. II. Methods for determining the correction of a universal effect of the effective (internal) field,” Opt. Spektrosk. 14, 745 (1963) [Opt. Spectrosc. (USSR) 14, 634 (1963)].
18. N. G. Bakhshiev, Photophysics of Dipole–Dipole Interactions (Izd. SPbGU, St. Petersburg, 2005).
19. N. G. Bakhshiev, ed., Solvatochromy. Problems and Methods (Izd. LGU, Leningrad, 1989).
20. I. I. Shaganov, T. S. Perova, M. V. Muhina, I. V. Martynenko, A. V. Baranov, A. V. Fedorov, V. Gerard, and Y. K. Gunko, “Influence of intermolecular interactions on spectroscopic characteristics of metal nanoparticles and their composites,” Phys. Chem. Chem. Phys. 16, 24536 (2014).
21. R. Fresh and J. S. Deshius, “Dipolar coupling and molecular vibration in crystals IV. Frequency shifts and dipole moment derivation,” Chem. Phys. 54, 2374 (1971).
22. T. S. Perova, I. I. Shaganov, and V. S. Libov, “Manifestation of the dynamic dipole-induced interactions in the absorption spectra of dilute solutions,” Opt. Spektrosk. 42, 883 (1977) [Opt. Spectrosc. (USSR) 42, 507 (1977)].
23. I. I. Shaganov and V. S. Libov, “Manifestation of dipole–dipole interactions in the absorption spectra of various condensed media,” Fiz. Tverd. Tela 17, 1749 (1975) [Sov. Phys. Solid State 17, 1136 (1975)].
24. I. I. Shaganov, “Investigation of the influence of resonance interactions on the spectroscopic characteristics of the bands of anomalous plasma absorption of thin metallic films,” Opt. Spektrosk. 49, 181 (1980) [Opt. Spectrosc. (USSR) 49, 97 (1980)].
25. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370 (1972).
26. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarisation,” Opt. Lett. 8, 581 (1983).