ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.37, 58.035.7

Effect of sodium chloride on the structural parameters and spectrooptical properties of manganese-containing zinc sulfide

For Russian citation (Opticheskii Zhurnal):

Сергеева Н.М., Цветкова М.Н., Богданов С.П. Влияние хлорида натрия на структурные параметры и спектрально-оптические свойства сульфида цинка, содержащего марганец // Оптический журнал. 2015. Т. 82. № 4. С. 80–87.

 

Sergeeva N.M., Tsvetkova M.N., Bogdanov S.P. Effect of sodium chloride on the structural parameters and spectrooptical properties of manganese-containing zinc sulfide [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 4. P. 80–87.

For citation (Journal of Optical Technology):

N. M. Sergeeva, M. N. Tsvetkova, and S. P. Bogdanov, "Effect of sodium chloride on the structural parameters and spectrooptical properties of manganese-containing zinc sulfide," Journal of Optical Technology. 82(4), 256-261 (2015). https://doi.org/10.1364/JOT.82.000256

Abstract:

A colloid method is used to synthesize zinc sulfide and a number of phosphors based on it. The structural and spectrooptical properties of zinc sulfide have been studied, along with manganese-containing zinc sulfide phosphors obtained in the presence of sodium chloride and without it. It is shown that the solid substitution solution ZnxMn(1−x)S is formed when the sulfides are deposited jointly. Moreover, deposition in the presence of sodium chloride makes it possible to obtain orange luminescence (wavelength 600 nm) of the zinc-sulfide phosphors and to increase its intensity by a factor of 3.5. This effect is caused by the capability of sodium chloride to partially alter the crystallographic symmetry and to increase the lattice parameter of zinc sulfide, and this promotes the transport of manganese into an octahedral interstice.

Keywords:

colloid method of synthesis, zinc sulfide, phosphors, manganese, solid substitution solution, orange luminescence

Acknowledgements:

The authors express gratitude to N. M. Shmidt for constant attention and interest in this project.

OCIS codes: 160.4760, 250.5230

References:

1. A. A. Bol and A. Meijernik, “Luminescence quantum efficiency of nano-crystalline ZnS:Mn2+ . 2. Enhancement by UV irradiation,” Phys. Chem. B 105, 10203 (2001).
2. E. K. Volkova and V. I. Kochubeı˘, “Luminescence and phosphorescence of nanoparticles of potassium sulfide,” Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk 14, No. 4, 197 (2012).
3. V. V. Bakhmet‘ev, S. V. Myakin, V. G. Korsakov, A. M. Abyzov, and M. M. Sychev, “A study of the surface and luminescence properties of ZnS:Mn2+ nanophosphors,” Glass Phys. Chem. 37, 548 (2011).
4. T. T. Q. Hoa, L. T. T. Binh, L. V. Vu, N. N. Long, V. T. H. Hanh, V. D. Chinh, and P. T. Nga, “Luminescent ZnS:Mn/thioglycerol and ZnS:Mn/ZnS core/shell nanocrystals: synthesis and characterization,” Opt. Mater. 35, 136 (2012).
5. P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys. 12, 593 (1931).
6. A. M. Abyzov, X-ray Analysis of Polycrystalline Substances on the Difreı˘ Minidiffractometer (SPBGTI (TU), St. Petersburg 2008).
7. S. P. Bogdanov, X-ray Analysis of Carbon Materials (SPbGTI (TU), St. Petersburg, 2013).
8. L. M. Kovba and V. K. Trunov, X-ray Phase Analysis (Izd. Mosk. Gos. Univ., Moscow, 1976).
9. S. P. Bogdanov, “The effect of a boron impurity on the crystalline structure of cubic boron nitride,” Fiz. Khim. Stekla 34, 281 (2008).
10. B. F. Ormont, Introduction to Physical Chemistry and the Crystal-Chemistry of Semiconductors. Textbook for Students of Technical Colleges, ed. V. M. Glazov (Vyssh. Shkola, Moscow, 1982).
11. A. M. Gurvich, Introduction to the Physical Chemistry of Crystal Phosphors: A Textbook (Vyssh. Shkola, Moscow, 1971), p. 113.
12. N. D. Borisenko, M. F. Bulatnyı˘, F. F. Kodzhespirov, and B. A. Polezhaev, “Properties of luminescence centers in single-crystal zinc sulfide with a manganese impurity,” Zh. Prikl. Spektrosk. 55, 452 (1991).
13. A. G. Miloslavskiı˘ and N. V. Suntsov, “Defect structure and luminescence centers of zinc sulfide phosphors,” Fiz. Tekh. Vys. Davlen. 7, No. 2, 94 (1997).
14. L. A. Gromov, “Study of the process of forming zinc sulfide phosphors,” Dissertation for doctor of chemical sciences (LTI im. Lensoveta, Leningrad, 1973).
15. A. Goudarzi, G. M. Aval, S. S. Park, M.-Ch. Choi, R. Sahraei, M. H. Ullah, A. Avane, and Ch.-S. Ha, “Low-temperature growth of nanocrystalline Mn-doped ZnS thin films prepared by chemical-bath deposition and optical properties,” Chem. Mater. 21, 2375 (2009).
16. X. Lu, C. Chen, S. Husurianto, and M. D. Koretsty, “Effect of chloride on the photoluminescence of ZnS:Mn thin films,” Appl. Phys. 85, 4154 (1999).
17. T. B. Chistyakova, V. V. Bakhmet’ev, Yu. I. Shlyago, P. I. Komarov, and A. A. Dembskiı˘, “Software complex for automatically calculating the color indices of a phosphor,” in Materials of the NPK, devoted to the 182nd Anniversary of the Formation of SPbGTI (TU), St. Petersburg, 25–26 November 2010.