ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.317.2

Design features of the lens objectives of celestial-orientation apparatus for spacecraft

For Russian citation (Opticheskii Zhurnal):

Гебгарт А.Я., Колосов М.П. Особенности проектирования линзовых объективов звездных приборов ориентации космических аппаратов // Оптический журнал. 2015. Т. 82. № 6. С. 36–41.

 

Gebgart A.Ya., Kolosov M.P. Design features of the lens objectives of celestial-orientation apparatus for spacecraft [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 6. P. 36–41.

For citation (Journal of Optical Technology):

A. Ya. Gebgart and M. P. Kolosov, "Design features of the lens objectives of celestial-orientation apparatus for spacecraft," Journal of Optical Technology. 82(6), 357-360 (2015). https://doi.org/10.1364/JOT.82.000357

Abstract:

This paper discusses the design features of the lens objectives of celestial-orientation apparatus for spacecraft. The layouts of the optical systems and the characteristics of a number of the objectives of modern celestial devices are presented to illustrate these features.

Keywords:

objective, celestial-orientation apparatus for spacecraft, size-and-mass characteristics

OCIS codes: 220.0220, 220.3620, 220. 4830

References:

1. A. Ya. Gebgart, “Design features of some types of ultrawide-angle objectives,” Opt. Zh. 77, No. 9, 17 (2010) [J. Opt. Technol. 77, 538 (2010)].
2. A. Ya. Gebgart, E. A. Shatova, and V. V. Medvedev, “The optical systems of certain types of wide-angle IR objectives,” Opt. Zh. 80, No. 2, 48 (2013) [J. Opt. Technol. 80, 107 (2013)].
3. V. I. Fedoseev and M. P. Kolosov, Optoelectronic Devices for Orientation and Navigation of Spacecraft (LOGOS, Moscow, 2007).
4. S. A. Dyatlov and R. V. Bessonov, “Review of star sensors for the orientation of spacecraft,” in Collection of Transactions of the All-Russia Scientific–Engineering Conference on Modern Problems of Determining the Orientation and Navigation of Spacecraft, Russia, Tarusa, September 22–25, 2008 (IKI RAN, Moscow, 2009).
5. A. Ya. Gebgart, “Concerning some features of the design of objectives of star devices for the orientation of spacecraft,” in Ninth International Forum on Optical Systems and Technologies (OPTICS EXPO) Abstracts of Reports, 2013, p. 27.
6. O. Yu. Stekol’shchikov, A. I. Zakharov, and M. E. Prokhorov, “Structural features of the narrow-field GAISh MGU star sensor with a mirror objective,” in Collection of Transactions of the All-Russia Scientific–Engineering Conference on Modern Problems of Determining the Orientation and Navigation of Spacecraft, Russia, Tarusa, September 10–13, 2012 (IKI RAN, Moscow, 2012).
7. M. M. Rusinov, N. A. Agal’tsova, and D. M. Rumyantsev, “Optical system ÓASTRAR-1Ó for a precision system of stellar orientation of spacecraft,” Izv. Vyssh. Uchebn. Zaved. Prib. 41, No. 3, 15 (1998).
8. A. I. Zakharov, M. E. Prokhorov, M. S. Tuchin, and A. O. Zhukov, “The minimum technical characteristics of a star sensor for the orientation needed to achieve a specified error,” Astrofiz. Byull. 68, 507 (2013).
9. Official site of Jena-Optronik, http://www.jena‑optronik.com.
10. J. P. Krebs, P. Pissavin, and D. Vilaire, “SED 16 autonomous star tracker,” in ESA International Conference on Spacecraft Guidance, Navigation and Control Systems, ESTEC, Noordwiı˘k, The Netherlands, 18–21 October 1999.
11. V. I. Fedoseev, Receiving Spatiotemporal Signals in Optoelectronic Systems (the Poisson Model) (Univ. Kniga, Moscow, 2011).
12. G. A. Avanesov, Ya. L. Ziman, V. A. Krasikov, N. I. Snetkova, V. G. Sobchuk, and A. A. Forsh, “Algorithms for determining the orientation of spacecraft from on-board astronomical measurements,” Izv. Vyssh. Uchebn. Zaved. Prib. 46, No. 4, 31 (2003).
13. I. S. Kruzhilov, “On the Influence of the relative size of an image on the error of determining the coordinates,” Komp’yut. Opt. 33, No. 2, 210 (2009).
14. L. I. Avakyants, A. N. Ignatov, E. Yu. Krekhova, V. I. Molev, A. E. Pozdnyakov, S. N. Sizov, and V. F. Surkova, “Optical materials with special properties manufactured at the Lytkarino Optical Glass Factory,” Opt. Zh. 80, No. 4, 3 (2013) [J. Opt. Technol. 80, 204 (2013)].
15. I. D. Nikolov and P. P. Angelov, “Objectives with an offset pupil,” Opt. Mekh. Prom. No. 12, 12 (1980) [Sov. J. Opt. Technol. 47, 700 (1980)].
16. M. M. Rusinov, The Composition of Optical Systems (Mashinostroenie, Leningrad, 1989).
17. W. U. Feng and S. Weimin, “Design of optical system for autonomous APS star sensors,” Proc. SPIE 7506, 75060F (2009).
18. A. Yu. Karelin, “Enhancing the accuracy of wide-field astronomical measurement devices with CCD arrays,” Opt. Zh. 66, No. 8, 46 (1998) [J. Opt. Technol. 66, 640 (1998)].
19. S. I. Latyev, Compensation of Errors in Optical Devices (Mashinostroenie, Leningrad, 1985).
20. V. A. Panov, ed., Designer’s Handbook for Optomechanical Devices (Mashinostroenie, Leningrad, 1980).
21. M. P. Kolosov, A. Ya. Gebgart, and A. Yu. Karelin, “On the role of the position of the pupils in the nonmisadjustable optical systems of goniometers with a geometrical-reference channel,” Opt. Zh. 79, No. 2, 48 (2012) [J. Opt. Technol. 79, 95 (2012)].
22. D. S. Volosov, Photographic Optics (Iskusstvo, Moscow, 1971).