ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.015

The possibility of synthesizing the aperture of a satellite thermal viewer

For Russian citation (Opticheskii Zhurnal):

Горный В.И., Латыпов И.Ш., Груздев В.Н., Кислицкий М.И. Возможность синтезирования апертуры спутникового тепловизора // Оптический журнал. 2015. Т. 82. № 7. С. 25–36.

 

Gorniy V.I., Latypov I.Sh., Gruzdev V.N., Kislitskiy M.I. The possibility of synthesizing the aperture of a satellite thermal viewer [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 7. P. 25–36.

For citation (Journal of Optical Technology):

V. I. Gornyĭ, I. Sh. Latypov, V. N. Gruzdev, and M. I. Kislitskiĭ, "The possibility of synthesizing the aperture of a satellite thermal viewer," Journal of Optical Technology. 82(7), 416-424 (2015). https://doi.org/10.1364/JOT.82.000416

Abstract:

Satellite thermal-vision monitoring requires both high geometrical resolution and frequent repetition of the imaging. However, high-angular-resolution satellite thermal viewers have a narrow viewing band and do not allow regular monitoring of territories. A resolution of this contradiction is proposed on the basis of the synthesis of the angular aperture of a scanning radiometer (thermal viewer). The results of laboratory and numerical experiments on the synthesis of the angular aperture of a thermal viewer are presented. It is shown that the synthetic angular aperture can be several times as large as the effective angular resolution of the thermal viewer without changing the viewing angle, and that the SNR is acceptable in practice.

Keywords:

satellite, monitoring, thermal viewer, images, geometrical resolution, aperture, synthesis

OCIS codes: 110.3080; 110.4190; 110.1220; 110.3010

References:

1. K. Watson, L. C. Rowan, and T. V. Offield, “Application of thermal modeling in geologic interpretation of IR images,” in Proceedings of Seventh International Symposium on Remote Sensing of Environment, Ann Arbor, Michigan, 1971, pp. 2017–2041.
2. V. I. Gornyı˘, B. V. Shilin, and G. I. Yasinskiı˘, Thermal Aerospace Imaging (Nedra, Moscow, 1993).

3. V. I. Gornyı˘, Distribution of Convective Thermal Flux in the White Sea Region from the Data of a Remote Geothermal Method. Natural Medium of Solovetskiı˘ Archipelago under Conditions of Variable Climate, Yu. G. Shvartsman and I. N. Bolotova, eds. (UrO RAN, Ekaterinburg, 2007).
4. V. I. Gornyı˘, S. G. Kritsuk, I. Sh. Latypov, and A. A. Tronin, “Quantitative estimate of the prospects of the gas-and-oil-bearing territories on the basis of the combined processing of materials of space-based and geophysical imaging,” Sovrem. Probl. Distants. Zondir. Zemli iz Kosmosa 5, No. 1, 349 (2008).
5. V. I. Gornyı˘ and S. G. Kritsuk, “On the possibility of mapping physico-geographic zones by thermal space imaging,” Dok. Ross. Akad. Nauk 411, 684 (2006).
6. V. I. Gornyı˘, S. G. Kritsuk, I. Sh. Latypov, T. E. Teplyakova, and A. A. Tronin, “Measurement technology of satellite monitoring of the earth from space,” Sovrem. Probl. Distants. Zondir. Zemli iz Kosmosa 5, No. 2, 469 (2008).
7. V. I. Gornyı˘, S. G. Kritsuk, and I. Sh. Latypov, “Thermodynamic approach to remote mapping of the level of disturbance of ecosystems,” Sovrem. Probl. Distants. Zondir. Zemli iz Kosmosa 8, No. 2, 179 (2011).
8. V. I. Gornyı˘, S. G. Kritsuk, I. Sh. Latypov, A. A. Tronin, and B. V. Shilin, “Remote-measurement monitoring of heat flux of urban and industrial agglomerations (using St. Petersburg and Helsinki as examples),” Teploéffekt. Tekh. Informats. Byul. No. 2, 17 (1997).
9. R. O. Harger, Synthetic Aperture Radar Systems: Theory and Design (Academic Press, New York, 1970).
10. V. I. Sintsov and A. F. Zapryagaev, “Aperture synthesis in optics,” Sov. Phys. Usp. 17, 931 (1975) [Usp. Fiz. Nauk 114, 655 (1974)].
11. R. A. Shovengerdt, Remote Probing: Models and Methods of Image Processing (Tekhnosfera, Moscow, 2010).
12. M. M. Miroshnikov, Theoretical Principles of Optoelectronic Devices (Mashinostroenie, Leningrad, 1983).
13. V. I. Gornyı˘ and I. Sh. Latypov, “Experimental confirmation of the possibility of creating a scanning radiometer with a synthesized aperture,” Dok. Ross. Akad. Nauk 387, 102 (2002).
14. A. N. Tikhonov and V. Ya. Arsenin, Methods of Solving Ill-Posed Problems (Nauka, Moscow, 1974).
15. A. N. Kulikov and V. R. Fazylov, “Finite method of solving systems of concave inequalities,” Izv. Vyssh. Uchebn. Zaved. Mat. No. 11, 59 (1984).
16. P. H. van Cittert, “Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien II,” Z. Phys. 69, 298 (1931).
17. R. Gold, “An iterative unfolding method for matrices,” Tech. Rep. ANL-6984 (Argonne National Laboratory, Argonne, Illinois, 1964).
18. V. S. Sizikov, Stable Methods of Processing the Results of Measurements (Spetsial’naya Lit., St. Petersburg, 1999).
19. A. Levi and G. Stark, “Recovery in phase and amplitude by the method of generalized projections,” in Image Recovery–Theory and Application, H. Stark, ed. (Academic Press, Orlando, Florida, 1987; Mir, Moscow, 1992), pp. 333–383.
20. R. H. Bates and M. J. McDonnell, Image Restoration and Reconstruction (Oxford University, 1989; Mir, Moscow, 1989).
21. V. I. Gornyı˘, M. I. Kislitskiı˘, and I. Sh. Latypov, “Estimate of the efficiency of algorithms for synthesizing the aperture of a scanning radiometer,” Sovrem. Probl. Distants. Zondir. Zemli iz Kosmosa 7, No. 2, 14 (2010).
22. Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Sig. Process. Lett. 9, No. 3, 81 (2002).
23. N. Kerle and R. Stekelenburg, “Advanced structural disaster damage assessment based on aerial oblique video imagery and integrated auxiliary data sources,” in Proceedings of the First International Symposium on Geo-information for Disaster Management, Delft, The Netherlands, 21–23 March 2005, P. J. M. van Oosterom, S. Zlatanova, and M. Elfriede, eds. (Springer, Berlin, 2005), pp. 337–353.
24. V. D. Svet, “About holographic (interferometric) approach to the primary visual perception,” Open J. Biophys. 3, 165 (2013).
25. V. S. Verba, L. B. Neronskiı˘, I. G. Osipov, and V. É. Turuk, Radar Systems for Space-Based Earth Scanning (Radiotekhnika, Moscow, 2010).