ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535

Calculation of the nonlinear interaction between a laser beam and alkali-metal atomic vapor in an ultrathin cell

For Russian citation (Opticheskii Zhurnal):

Тодоров Г., Полищук В.А., Крастева А., Саргсян А.Д., Карталева С., Вартанян Т.А. Расчет нелинейного взаимодействия лазерного излучения с атомарными парами щелочных металлов в сверхтонкой ячейке // Оптический журнал. 2016. Т. 83. № 11. С. 17–26.

 

Todorov G., Polishchuk V.A., Krasteva A., Sargsyan A.D., Kartaleva S., Vartanyan T.A. Calculation of the nonlinear interaction between a laser beam and alkali-metal atomic vapor in an ultrathin cell [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 11. P. 17–26.

For citation (Journal of Optical Technology):

G. Todorov, V. Polishchuk, A. Krasteva, A. D. Sargsyan, S. Cartaleva, and T. A. Vartanyan, "Calculation of the nonlinear interaction between a laser beam and alkali-metal atomic vapor in an ultrathin cell," Journal of Optical Technology. 83(11), 659-666 (2016). https://doi.org/10.1364/JOT.83.000659

Abstract:

We calculate the fluorescence and nonlinear absorption spectra of alkali-metal atomic vapor in ultrathin cells. We obtain closed-form equations for the nonlinear atomic polarization by applying perturbation theory to the intensity of linearly polarized laser light for arbitrary values of the total momenta of the resonant levels. The results of this calculation are consistent with experimental data obtained using an ultrathin cell filled with Cs133 vapor.

Keywords:

thin atomic alkali-metal vapor, ultrathin cell, nonlinear atomic polarization, absorption and fluorescence coefficients

Acknowledgements:

The research was supported by the Bulgarian Academy of Sciences (BAS) (DFNP-188/14.05.2016); Ministry of Education and Science of the Russian Federation (Minobrnauka).
A. Krastev thanks the Bulgarian Academy of Sciences within the framework of the Assistance to Young Scientists scientific program. T. A. Vartanyan is the principal investigator for the Russian Federation Ministry of Education and Science Scientific Project “Management of Scientific Research 2014/190.” G. Todorov thanks Dr. D. Slavov for assistance in performing the numerical calculations.

OCIS codes: 020.2690, 190.4350, 300.6210

References:

1. D. Sarkisyan, D. Bloch, A. Papoyan, and M. Ducloy, “Sub-Doppler spectroscopy by sub-micron thin Cs vapour layer,” Opt. Commun. 200, 201–208 (2001).
2. A. C. Izmailov, “On the possibility of detecting the sub-Doppler structure of spectral lines of gas particles by a single travelling monochromatic wave,” Laser Phys. 2, 762–763 (1992).
3. A. C. Izmailov, “Manifestations of sub-Doppler structure of the spectral lines of gas particles in the radiation of a traveling monochromatic pump wave,” Opt. Spectrosc. 74, 25–29 (1993).
4. S. Briaudeau, D. Bloch, and M. Ducloy, “Detection of slow atoms in laser spectroscopy of a thin vapor film,” Europhys. Lett. 35, 337–342 (1996).

5. T. A. Vartanyan and D. L. Lin, “Enhanced selective reflection from a thin layer of a dilute gaseous medium,” Phys. Rev. A 51, 1959–1964 (1995).
6. G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, “Collapse and revival of a Dicke-type coherent narrowing in a sub-micron thick vapor cell transmission spectroscopy,” Europhys. Lett. 63, 35–41 (2003).
7. C. Andreeva, S. Cartaleva, L. Petrov, S. M. Saltiel, D. Sarkisyan, T. Varzhapetyan, D. Bloch, and M. Ducloy, “Saturation effects in the sub-Doppler spectroscopy of cesium vapor confined in an extremely thin cell,” Phys. Rev. A 76, 013837 (2007).
8. S. Cartaleva, S. Saltiel, A. Sargsyan, D. Sarkisyan, D. Slavov, P. Todorov, and K. Vaseva, “Sub-Doppler spectroscopy of cesium vapor layers with nanometric and micrometric thickness,” J. Opt. Soc. Am. B 26, 1999–2006 (2009).
9. J. L. Cojan, “Contribution à l’étude de la réflexion sélective sur la vapeur de mercure de la radiation de résonance du mercure,” Ann. Phys. 9, 385–440 (1954).
10. R. H. Romer and R. H. Dicke, “New technique for high-resolution microwave spectroscopy,” Phys. Rev. 99, 532–536 (1955).
11. T. A. Vartanyan, “Resonant reflection of intense optical radiation from a low-density gaseous medium,” Sov. Phys. JETP 61(4), 674–677 (1985) [Zh. Éksp. Teor. Fiz. 88, 1147–1152 (1985)].
12. G. Dutier, S. Saltiel, D. Bloch, and M. Ducloy, “Revisiting optical spectroscopy in a thin vapor cell: mixing of reflection and transmission as a Fabry-Perot microcavity effect,” J. Opt. Soc. Am. B 20, 793–800 (2003).
13. I. Maurin, P. Todorov, I. Hamdi, A. Yarovitski, G. Dutier, S. Saltiel, M.-P. Gorza, M. Fichet, D. Bloch, and M. Ducloy, “Mesure à faible distance de l’interaction atome-surface de type van der Waals dans une cellule nanométrique de vapeur de césium,” J. Phys. IV 135, 235–236 (2006).
14. S. Dey, B. Ray, P. N. Ghosh, S. Cartaleva, and D. Slavov, “Investigation of high-contrast velocity selective optical pumping resonance at the cycling transition of Cs using fluorescence technique,” Opt. Commun. 356, 378–388 (2015).
15. T. A. Vartanyan and D. L. Lin, “Nonlinear diffraction due to the transient polarization in a thin film of atomic gases,” Eur. Phys. J. D 1, 217–221 (1998).
16. B. Decomps, M. Dumont, and M. Ducloy, “Linear and nonlinear phenomena in laser optical pumping,” in Laser Spectroscopy of Atoms and Molecules (Springer, 1976), pp. 283–347.
17. M. I. Dyakonov and V. I. Perel, “On the theory of a gas laser in a magnetic field,” Opt. Spectrosc. 20, 257–261 (1966) [Opt. Spektrosk. 20, 472–480 (1966)].
18. M. Ducloy and M. Dumont, “Étude du transfert d’excitation par émission spontanée-I.—Analyse théorique,” J. Phys. 31, 419–427 (1970).
19. E. B. Aleksandrov, G. I. Khvostenko, and M. P. Chaı˘ka, Interference of Atomic States (Springer-Verlag, Berlin, 1993; Nauka, Moscow, 1991).
20. D. A. Steck, “Cesium D line data,” http://steck.us/alkalidata (Revision 2.0.1, 2 May 2008).
21. A. P. Voı˘tovich, Magneto-optics of Gas Lasers (Nauka, Moscow, 1984).
22. W. E. Lamb, Jr., “Theory of an optical maser,” Phys. Rev. 134, A1429–A1450 (1964).
23. D. Sarkisyan, T. Varzhapetyan, A. Sarkisyan, Y. Malakyan, A. Papoyan, A. Lezama, D. Bloch, and M. Ducloy, “Spectroscopy in an extremely thin vapor cell: comparing the cell-length dependence in fluorescence and in absorption techniques,” Phys. Rev. A 69, 065802 (2004).
24. G. V. Nikogosyan, D. G. Sarkisyan, and Yu. P. Malakyan, “Absorption of resonance radiation and fluorescence of a layer of an atomic gas with thickness of the order of a wavelength,” J. Opt. Technol. 71(9), 602–607 (2004) [Opt. Zh. 71(9), 45–51 (2004)].