ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.14:530.182, 535.33:21.373.8, 616-005, 617.7, 617-7

Pulsed-periodic Ho:YLF lasers: optimization problems

For Russian citation (Opticheskii Zhurnal):

Серебряков В.А., Храмов В.Ю., Наривончик А.С., Калинцева Н.А., Корнев А.Ф., Павлова А.Л., Скворцов Д.В. Импульсно-периодические Ho:YLF лазеры, проблемы оптимизации // Оптический журнал. 2016. Т. 83. № 12. С. 17–24.


Serebryakov V.A., Khramov V.Yu., Narivonchik A.S., Kalintseva N.A., Kornev A.F., Pavlova A.L., Skvortsov D.V. Pulsed-periodic Ho:YLF lasers: optimization problems [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 12. P. 17–24.

For citation (Journal of Optical Technology):

V. A. Serebryakov, V. Yu. Khramov, A. S. Narivonchik, N. A. Kalintseva, A. F. Kornev, A. L. Pavlova, and D. V. Skvortsov, "Pulsed-periodic Ho:YLF lasers: optimization problems," Journal of Optical Technology. 83(12), 722-728 (2016).


This paper analyzes the prospects of creating high-efficiency, low-frequency (100–1000 Hz) holmium lasers as the pumping source of a parametric radiation converter in the 6–8-μm spectral region for precision surgery. It provides a basis for choosing the optical design of a Ho:YLF-laser prototype with the required radiation parameters: energy per pulse up to 80 mJ at a frequency of 100 Hz and 50 mJ at 1000 Hz, pulse width about 20 ns, and M2≈1.5. The experimental study of the dependence of the absorption and weak-signal gain within wide limits of the pump intensity at various Ho3+ concentrations made it possible to estimate how much the processes of ground-state depletion and reabsorption of Ho crystals contribute to the lasing parameters. Pulsed-periodic Ho:YLF lasers were modeled with intense pumping, for which the inversion varies along the active medium during lasing because of saturation of the pumping, as well as because of periodic population inversion of the lower laser level. Optimization is carried out, taking into account the limitation on the radiation strength of the Ho crystals.


pulsed-periodic Ho:YLF laser, population, reabsorption, ground-state depletion


The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (14.579.21.0015).

OCIS codes: 140.3070; 140.3538


1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2-μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, 2010), Chap. 21.
2. G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO 2 : design and application to atmospheric measurements,” Appl. Opt. 47, 944–956 (2008). 
3. U. Singh, W. Engelund, T. Refaat, M. J. Kavaya, J. Yu, and M. Petros, “Mars atmospheric characterization using advanced 2-μm orbiting lidar,” in European Planetary Science Congress (EPSC, 2015), Vol. 10, paper EPSC2015–52.
4. R. L. Blackmon, J. R. Case, P. B. Irby, S. R. Trammell, and N. M. Fried, “Fiber-optic manipulation of urinary stone phantoms using holmium: YAG and thulium fiber lasers,” J. Biomed. Opt. 18(2), 28001 (2013).
5. Y. Bai, J. Yu, T. Wong, S. Chen, M. Petros, and U. Singh, “Single-mode, high repetition-rate, compact Ho:YLF laser for space-borne lidar applications,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2014), paper AW1P.4.
6. C. Kieleck, A. Hildenbrand, M. Schellhorn, G. Stoeppler, and M. Eichhorn, “Compact high-power/high-energy 2-μm and mid-infrared laser sources for OCM,” Proc. SPIE 8898, 889809 (2013).
7. V. A. Serebryakov, É. V. Boı˘ko, N. N. Petrishchev, and A. V. Yan, “Medical applications of mid-IR lasers. Problems and prospects,” J. Opt. Technol. 77(1), 6–17 (2010) [Opt. Zh. 77(1), 9–23 (2010)].
8. V. A. Serebryakov, É. V. Boı˘ko, A. G. Kalintsev, A. F. Kornev, A. S. Narivonchik, and A. L. Pavlova, “Mid-IR laser for high-precision surgery,” J. Opt. Technol. 82(12), 781–788 (2015) [Opt. Zh. 82(12), 3–13 (2015)].
9. W. Koen, C. Jacobs, L. Wu, and H. J. Strauss, “60-W Ho:YLF oscillator-amplifier system,” Proc. SPIE 9342, 93421Y (2015).
10. A. F. Kornev, A. S. Narivonchik, A. L. Pavlova, and V. A. Serebryakov, “Efficient 50 mJ/1000 Hz Q-switched Ho:YLF MOPA laser,” in 15th International Conference on Laser Optics (LO) (2012), paper ThR1–23.
11. I. Elder and T. Kendall, “Efficient single-pass resonantly pumped Ho:YAG laser,” Proc. SPIE 8543, 854307 (2012).
12. Y. Tan, F. Chen, J. R. V. de Aldana, H. Yu, and H. Zhang, “Quasi-three-level laser emissions of neodymium-doped disordered crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601905 (2015).
13. T. Y. Fan, Laser Sources and Applications, A. Miller and D. M. Finlayson, eds. (SUSSP and IOP, Bristol, 1996), pp. 163–194.

14. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb 3+
-doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
15. J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, and W. A. Clarkson, “Efficient in-band pumped Ho:LuLiF 4 2-μm laser,” Opt. Lett. 35, 420–422 (2010).
16. E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, and G. Rustad, “Midinfrared laser source with high power and beam quality,” Appl. Opt. 45, 3839–3845 (2006).
17. F. Augé, F. Druon, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, “Theoretical and experimental investigations of a diode-pumped quasi-three-level laser: the Yb3+-doped Ca4 GdO(BO 3 ) 3 (Yb:GdCOB) laser,” IEEE J. Quantum Electron. 36, 598–606 (2000).
18. M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 1455–1464 (2002).
19. M. Eichhorn, “Quasi-three-level solid-state lasers in the near- and mid-infrared based on trivalent rare-earth ions,” Appl. Phys. B 93, 269–316 (2008).
20. W. Koen, C. Bollig, H. Strauss, M. Schellhorn, C. Jacobs, and M. J. D. Esser, “Compact fibre-laser-pumped Ho:YLF oscillator–amplifier system,” Appl. Phys. B 99, 101–106 (2010).
21. J. K. Jabczynski, L. Gorajek, M. Kaskow, J. Kwiatkowski, W. Zendzian, and K. Kopczynski, “The new optimization method of Q-switched quasi-three-level lasers,” Proc. SPIE 8187, 81870U (2011).
22. O. J. P. Collett, “Modelling of end-pumped Ho:YLF amplifiers,” M.S. thesis (Stellenbosch University, 2013).
23. Y. Bai, J. Yu, M. Petros, P. Petzar, B. Trieu, H. Lee, and U. Singh, “High-repetition-rate and frequency-stabilized Ho:YLF laser for CO 2 differential absorption lidar,” in Advanced Solid State Photonics, OSA Technical Digest Series (Optical Society of America, 2009), paper WB22.
24. A. Dergachev, P. F. Moulton, and T. E. Drake, “High-power Tm-fiber-laser-pumped Ho:YLF laser,” in Advanced Solid-State Photonics, C. Denman and I. Sokorina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 608.
25. J. Kwiatkowski, “Highly efficient high power CW and Q-switched Ho:YLF laser,” Opto-Electron. Rev. 23(2), 165–171 (2015).
26. LASER COMPONENTS, GmbH, 2011,‑optik/laserstaebe_kristalle/ylf_crystal.pdf&no_cache=1.