ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.373.3

Binding energy of a quasi-molecule in nanoheterostructures

For Russian citation (Opticheskii Zhurnal):

Покутний С.И., Горбик П.П. Энергия связи квазимолекулы в наногетероструктурах // Оптический журнал. 2016. Т. 83. № 8. С. 12–16.

 

Pokutniy S.I., Gorbik P.P. Binding energy of a quasi-molecule in nanoheterostructures [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 8. P. 12–16.

For citation (Journal of Optical Technology):

S. I. Pokutniĭ and P. P. Gorbik, "Binding energy of a quasi-molecule in nanoheterostructures," Journal of Optical Technology. 83(8), 459-462 (2016). https://doi.org/10.1364/JOT.83.000459

Abstract:

This paper shows that the appearance of a quasi-molecule consisting of two cadmium sulfide quantum dots located in a borosilicate glass matrix with electrons localized above the surfaces of the quantum dots has a threshold character and can occur in a nanosystem in which the distance D between the surfaces of the quantum dots is determined by the condition Dc(1)≤D≤Dc(2) (where Dc(1) and Dc(2) are certain critical distances). A substantial increase (by more than an order of magnitude) is detected in the binding energy of the singlet ground state of a quasi-molecule by comparison with the binding energy of a biexciton in single-crystal cadmium sulfide. It is established that the main contribution to the binding energy of the quasi-molecule is from the electron–hole exchange-interaction energy, which is substantially greater than the contribution of the electron–hole Coulomb-interaction energy.

Keywords:

nanoheterosystem, quasi-molecule, superatoms, quantum dots, binding energy

OCIS codes: 160.2540, 160.4236, 250.5230

References:

1. E. A. Andryushin and A. A. Bykov, “From superlattices to superatoms,” Phys.–Usp. 31(1), 68–73 (1998) [Usp. Fiz. Nauk 154(1), 123–131 (1998)].
2. Y. V. Malyukin, “Activation nanocrystals dielectric,” Radiat. Meas. 4(3), 589 (2010).
3. S. I. Pokutniı˘ and P. P. Gorbik, “The electronic properties of nanosize quasi-atomic structures,” Uspekhi Fiz. Met. 14(4), 144–168 (2013).
4. S. I. Pokutniı˘, “On an exciton with a spatially separated electron and hole in quasi-zero-dimensional semiconductor nanosystems,” Semiconductors 47(6), 791–798 (2013) [Fiz. Tekh. Poluprovodn. 47(6), 780–787 (2013)].
5. S. I. Pokutniı˘, “Binding energy of the exciton of a spatially separated electron and hole in quasi-zero-dimensional semiconductor nanosystems,” Tech. Phys. Lett. 39(3), 233–235 (2013) [Pis’ma Zh. Tekh. Fiz. 39(5), 11–16 (2013)].
6. S. I. Pokutnyi, “Exciton states spectroscopy in quasi-zero-dimensional nanostructures: theory,” Optics 3(6-1), 2–9 (2014), special issue on Optics and Spectroscopy of the Charge Carriers and Exciton States in Quasi-zero-dimensional Nanostructures.
7. S. I. Pokutnyi, “Theory of excitons and excitonic quasi-molecules formed from spatially separated electrons and holes in quasi-zero-dimensional nanosystems,” Optics 3(6-1), 10–21 (2014), special issue on Optics and Spectroscopy of the Charge Carriers and Exciton States in Quasi-zero-dimensional Nanostructures.
8. S. I. Pokutniı˘, “Spectroscopy of quasi-atomic nanostructures,” J. Opt. Technol. 82(5), 280–285 (2015) [Opt. Zh. 82(5), 8–16 (2015)].
9. V. Ya. Grabovskis, Ya. Ya. Dzenis, and A. I. Ekimov, “Photoionization of semiconductor microcrystals in glass,” Sov. Phys. Solid State 31(1), 149–150 (1989) [Fiz. Tverd. Tela (Leningrad) 31(1), 272–275 (1989)].
10. N. V. Bondar and M. S. Brodyn, “Optical properties of semiconductor nanostructures,” Physics E 4(10), 1549–1555 (2010).
11. V. P. Dzyuba, A. E. Krasnok, and Yu. N. Kul’chin, “Nonlinear refractive index of dielectric nanocomposites in weak optical fields,” Tech. Phys. Lett. 36(11), 973–977 (2010) [Pis’ma Zh. Tekh. Fiz. 36(21), 1–9 (2010)].
12. J. N. Kulchin and V. P. Dzyuba, “Nanooptical properties of the dielectric nanoparticles inserted into a dielectric matrix,” Pac. Sci. Rev. 12(1), 102–105 (2010).
13. A. N. Latyshev, O. V. Ovchinnikov, and M. S. Smirnov, “Charge-transfer features when sensitizer molecules interact with nanocrystals,” Zh. Prikl. Spektrosk. 78(3), 481–484 (2011).
14. T. I. Suvorova, A. N. Latyshev, O. V. Ovchinnikov, and M. S. Smirnov, “Luminescence amplification of dye molecules in the presence of silver nanoparticles,” J. Opt. Technol. 79(1), 56–58 (2012) [Opt. Zh. 79(1), 79–82 (2012)].
15. S. I. Pokutniı˘, “Biexcitons formed from spatially separated electrons and holes in quasi-zero-dimensional semiconductor nanosystems,” Semiconductors 47(12), 1626–1635 (2013) [Fiz. Tekh. Poluprovodn. 47(12), 1653–1661 (2013)].
16. S. I. Pokutnyi, “Size quantization of the exciton in quasi-zero-dimensional structures: theory,” Phys. Lett. A 203(5–6), 388–394 (1995).
17. S. A. Moskalenko, P. I. Khadzhi, and A. I. Bobrysheva, “Biexcitons in semiconductor crystals,” Sov. Phys. Solid State 5(5), 1051–1057 (1963) [Fiz. Tverd. Tela (Leningrad) 5(5), 824–829 (1963)].