ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 681.786.3

Analysis of the optical system of a test bench for certifying a nonmisadjustable turning-angle sensor

For Russian citation (Opticheskii Zhurnal):

Колосов М.П., Федосеев В.И. Анализ оптической системы стенда для паспортизации нерасстраиваемого датчика угла поворота // Оптический журнал. 2016. Т. 83. № 8. С. 41–47.

 

Kolosov M.P., Fedoseev V.I. Analysis of the optical system of a test bench for certifying a nonmisadjustable turning-angle sensor [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 8. P. 41–47.

For citation (Journal of Optical Technology):

M. P. Kolosov and V. I. Fedoseev, "Analysis of the optical system of a test bench for certifying a nonmisadjustable turning-angle sensor," Journal of Optical Technology. 83(8), 481-485 (2016). https://doi.org/10.1364/JOT.83.000481

Abstract:

We perform a theoretical analysis of the optical system in a specialized test bench for certification of a nonmisadjustable turning-angle sensor, based on an annular-field collimator, and discuss a specific example. We demonstrate that this type of test bench can be used to substantially improve the accuracy and precision of such a turning-angle sensor.

Keywords:

optical system, collimator, objective, matrix radiation detector, measurements error

OCIS codes: 120.4570, 220.4830

References:

1. M. P. Kolosov and V. I. Fedoseev, “Analysis of the optical system of a turning-angle sensor based on a collimator with an annular field,” J. Opt. Technol. 81(2), 90–94 (2014) [Opt. Zh. 81(2), 49–54 (2014)].
2. M. P. Kolosov and V. I. Fedoseev, “A test bench for certification of an annular-field collimator,” in Abstracts of Papers from the Tenth Anniversary International Forum on Optical Systems and Technologies (OPTICS-EXPO 2014) (2014), p. 57.
3. M. P. Kolosov, Optics of Adaptive Goniometers. Introduction to Design (LOGOS, Moscow, 2011).
4. A. Yu. Karelin, “Enhancing the accuracy of wide-field astronomical measurement devices with CCD arrays,” J. Opt. Technol. 65(8), 640–644 (1998) [Opt. Zh. 65(8), 46–50 (1998)].
5. S. A. Dyatlov and R. V. Bessonov, “Review of star trackers for satellites,” in Proc. of the Russian Scientific Conference on Current Issues in Spacecraft Attitude Determination and Navigation (Tarusa, Russia, 2008; IKI, Moscow 2009), pp. 11–31.
6. V. I. Fedoseev and M. Kolosov, Optoelectronic Devices for Spacecraft Orientation and Navigation (LOGOS, Moscow, 2007).
7. V. I. Fedoseev, Detection of Spatial-Domain and Time-Domain Signals in Optoelectronic Systems (Universitetskaya Kniga, Moscow, 2011).
8. G. A. Avanesov, Ya. L. Ziman, V. A. Krasikov, N. I. Snetkova, V. G. Sobchuk, and A. A. Forsh, “Algorithms for determining the orientation of spacecraft from on-board astronomical measurements,” Izv. Vyssh. Uchebn. Zaved. Prib. 46(4), 31–37 (2003).
9. V. S. Mikheechev and N. N. Popov, Design and Fabrication of Geodetic Instruments (Izd. MIIGAiK, Moscow, 2006).