ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 533.9.07

Dual-pulse bispectral laser excitation and plasma initiation in an extreme-UV radiation source for nanolithography

For Russian citation (Opticheskii Zhurnal):

Сейсян Р.П., Беспалов В.Г., Жевлаков А.П., Макаров Е.А., Родионов А.Ю. Двухимпульсное биспектральное лазерное возбуждение и инициация плазмы в источнике экстремально-ультрафиолетового излучения для нанолитографии // Оптический журнал. 2017. Т. 84. № 11. С. 45–54.

 

Seysyan R.P., Bespalov V.G., Zhevlakov A.P., Makarov E.A., Rodionov A.Yu. Dual-pulse bispectral laser excitation and plasma initiation in an extreme-UV radiation source for nanolithography [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 11. P. 45–54.

For citation (Journal of Optical Technology):

R. P. Seĭsyan, V. G. Bespalov, A. P. Zhevlakov, E. A. Makarov, and A. Yu. Rodionov, "Dual-pulse bispectral laser excitation and plasma initiation in an extreme-UV radiation source for nanolithography," Journal of Optical Technology. 84(11), 753-760 (2017). https://doi.org/10.1364/JOT.84.000753

Abstract:

This paper describes a laser system that provides dual-pulse bispectral excitation of a laser plasma in an extreme-UV source for nanolithography in this spectral region. The radiation converter is based on a low-power YAG:Nd laser and a powerful CO2 laser. A saturating signal is injected into the power stage of a CO2 amplifier by subnanosecond pulses at wavelength 9.2 μm from a stimulated-Raman-scattering amplifier pumped by the radiation of an optical parametric oscillator that uses the radiation of a YAG:Nd solid-state laser (the master oscillator). Mechanisms for high-efficiency conversion of laser radiation into the extreme-UV region (13.4 or 6.7 nm) were theoretically and experimentally studied. The laser system makes it possible to independently establish the optimum delay time between the pulses in order to increase the output of the extreme-UV radiation.

Keywords:

laser plasma, extreme-UV radiation source, YAG:Nd laser, stimulated Raman scattering

Acknowledgements:

The research was partially supported by the International Science and Technology Center (ISTC) (0991, 3857)
The authors express their gratitude to O. B. Danilov for participating in the estimates and providing data concerning the CO 2 slit laser.

OCIS codes: 350.5400, 340.7480, 140.3550

References:

1. D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation (Cambridge Univ. Press, New York, 1999).

2. A. A. Andreev, T. Ueda, and J. Limpouch, “Optimal lithium targets for laser-plasma lithography,” Proc. SPIE 4343, 789 (2001).
3. A. A. Andreev, V. G. Nikolaev, K. Yu. Platonov, and Yu. A. Kurakin, “Key methods for intensifying soft X-ray emission from a laser plasma for lithography,” Tech. Phys. 52(6), 739–746 (2007) [Zh. Tekh. Fiz. 77(6), 62–69 (2007)].
4. “EVUV nanolithography for VLSI,” in Japan–Russia Advanced Science and Technology Forum, Tokyo, Japan, 2000, pp. 164–172.
5. A. A. Andreev, V. G. Nikolaev, K. Yu. Platonov, and R. P. Seı˘syan, “Laser-plasma EUV and MR sources for nanolithography,” in Collection of Abstracts of the International Forum on Nanotechnologies RUSNANOTECH 08, Moscow, 2008, p. 209.
6. H. Komori, Y. Ueno, H. Hoshino, T. Ariga, G. Soumagne, A. Endo, and H. Mizoguchi, “EUV radiation characteristics of a CO 2 laser-produced Xe plasma,” Appl. Phys. B 83(2), 213–218 (2006).
7. A. Endo, “CO 2 laser-produced Sn plasma source for EUV lithography,” in International Symposium on Extreme Ultraviolet Lithography, 2008.
8. A. P. Zhevlakov, R. P. Seisyan, V. G. Bespalov, V. V. Elizarov, A. S. Grishkanich, and S. V. Kascheev, “High efficiency bispectral laser for EUV,” Proc. SPIE 9512, 95121W (2015).
9. A. P. Zhevlakov, R. P. Seisyan, V. G. Bespalov, V. V. Elizarov, A. S. Grishkanich, and S. V. Kascheev, “High-efficiency bispectral laser source for EUV lithography,” Proc. SPIE 9735, 97351F (2016).
10. A. P. Zhevlakov, R. P. Seisyan, V. G. Bespalov, V. V. Elizarov, A. S. Grishkanich, S. V. Kascheev, and I. S. Sidorov, “Energy effective dual-pulse bispectral laser for EUV lithography,” Proc. SPIE 9776, 97760Q (2016).
11. V. G. Bespalov, V. N. Krylov, V. N. Mikhailov, V. A. Parfenov, and D. I. Staselko, “Generating tunable radiation with high spectral luminance based on vibrational and rotational stimulated Raman scattering in gases,” Opt. Spectrosc. (USSR) 70(2), 193–195 (1991) [Opt. Spektrosk. 70(2), 332–336 (1991)].
12. B. C. Butylkin, A. E. Kaplan, I. G. Khronopulo, and E. M. Yakubovich, Resonance Interactions of Light with Matter (Nauka, Moscow, 1977).
13. V. S. Butylkin, G. V. Venkin, L. L. Kulyuk, D. I. Maleev, Yu. G. Khranopulo, and M. F. Shalyaev, “The role of parametric and Raman processes in the generation of the axial second Stokes component of SRS,” Sov. J. Quantum Electron. 7(7), 867–872 (1977) [Kvant. Elektron. (Moscow) 4(7), 1537–1546 (1977)].
14. A. I. Sokolovskaya, G. L. Brekhovskikh, and A. D. Kudryavtseva, “Wavefront reconstruction of light beams during the SRS of light,” Sov. Phys. Dokl. 22(3), 156–160 (1977) [Dok. Akad. Nauk SSSR 233(3), 356–361 (1977)].
15. G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, “Efficient conversion from 1 to 2 μm by a KTP-based ring optical parametric oscillator,” Opt. Lett. 27, 1336–1338 (2002).
16. P. K. Cheo and R. L. Abrams, “Rotational relaxation rate of CO 2 laser levels,” Appl. Phys. Lett. 14(2), 47–49 (1969).
17. R. L. Abrams and P. K. Cheo, “Collisional relaxation of CO 2 rotational levels by N 2 and He,” Appl. Phys. Lett. 15(6), 177–178 (1969).
18. R. R. Jacobs, K. J. Pettipiece, and S. J. Thomas, “Rotational relaxation rate constants for CO 2 ,” Appl. Phys. Lett. 24(8), 375–377 (1974).
19. B. J. Feldman, “Multiline short pulse amplification and compression in high gain carbon dioxide laser amplifiers,” Opt. Commun. 14(1), 13–16 (1975).
20. I. V. Fomenkov, D. C. Brandt, N. R. Farrar, B. LaFontaine, N. R. Browering, D. J. Brown, A. I. Ershov, and D. W. Myers, “Laser-produced plasma EUV light source for EUVL patterning at 20-nm node and beyond,” Proc. SPIE 8679, 867922I (2013).
21. Ju. Stoeldraijer, D. Ockwell, and Ch. Wagner, “Update on ASML’s NXE platform,” in EUVL Symposium, Prague, 2009.
22. R. P. Seı˘syan, “Source of extreme ultraviolet radiation with laser plasma at wavelength 13.4 nm,” Russian Patent No. 94003 (2009).
23. K. Murakami, “Laser plasma EUV light source, target member, production method for target member, target supplying method, and EUV exposure system,” Japanese Patent No. EP1837897 (2005).
24. R. P. Seı˘syan, V. G. Bespalov, and A. P. Zhevlakov, “Laser-plasma source of extremely short ultraviolet radiation,” Russian Patent No. 114524 (2011).
25. T. Higashiguchi, T. Otsuka, T. Yugami, W. Jiang, A. Endo, P. Dunne, B. Li, and G. O’sullivan, “Shorter-wavelength extreme-UV sources below 10 nm,” SPIE Newsroom (2011).
26. O. S. Vasil’ev, V. P. Veı˘ko, S. G. Gornyı˘, and Yu. S. Ruzankina, “Laser apparatus for microstructuring a metal surface, using a fiber laser,” J. Opt. Technol. 82(12), 831–836 (2015) [Opt. Zh. 82(12), 70–77 (2015)].
27. A. I. Dutov, I. Yu. Evstratov, A. A. Kuleshov, S. A. Motovilov, N. A. Novoselov, V. E. Semenov, P. E. Smirnov, A. A. Sokolov, and M. S. Yur’ev, “Slab waveguide high-power pulsed rf-excited CO 2 laser,” Proc. SPIE 3574, 171–178 (1998).
28. A. I. Dutov, A. A. Kuleshov, N. A. Novoselov, N. L. Orlov, A. A. Sokolov, and S. A. Motovilov, “Gain of the active medium and lasing parameters of a CO 2 slit laser with high pulse power,” Izv. Ross. Akad. Nauk Ser. Fiz. 66(8), 1179–1181 (2002).
29. O. B. Danilov, V. V. Lyubimov, and N. N. Rozanov, “Regenerative amplification of laser-injector signal with given wavefront and problem of multislab phasing,” Proc. SPIE 3092 (1997).
30. V. V. Zabrodskiı˘, Yu. M. Zadiranov, S. G. Kalmykov, A. M. Mozharov, M. V. Petrenko, M. É. Sasin, and R. P. Seı˘syan, “The effect of a UV pre-ionization pulse on short-wave radiation output from a laser-produced-plasma source with a Xe gas-jet target,” Pis’ma Zh. Tekh. Fiz. 40(15), 38–44 (2014) [Tech. Phys. Lett. 40, 648–650 (2014)].
31. N. A. Kaliteevskaya and R. P. Seı˘syan, “Simulation of photochemical transformations and photodarkening in photoresist films exposed to pulsed vacuum-ultraviolet radiation,” Semiconductors 34(7), 825–828 (2000) [Fiz. Tekh. Poluprovodn. 34(7), 857 (2000)].
32. N. A. Kaliteevskaya and R. P. Seı˘syan, “Contrast amplification effect of image transfer when UV radiation interacts with inorganic semiconductor films,” Izv. Ross. Akad. Nauk Ser. Fiz. 65(4), 475–477 (2001).
33. V. V. Kirilenko, B. M. Zhigarnovskiı˘, I. P. Malkerova, V. A. Samokhov, A. G. Beı˘rakhov, A. V. Mikhaı˘lov, and A. N. Baranov, “Optical and performance properties of fluoride and oxide films produced by vacuum evaporation,” J. Opt. Technol. 83(9), 565–568 (2016) [Opt. Zh. 83(9), 72–77 (2016)].