ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.384.4

Effect of ultraviolet radiation from a pulsed ArF laser on the viability of microfungi

For Russian citation (Opticheskii Zhurnal):

Кирцидели И.Ю., Парфенов В.А., Зверева Г.Н., Петров А.А., Григорьева Н.О. Воздействие ультрафиолетового излучения импульсного ArF-лазера на жизнеспособность микроскопических грибов // Оптический журнал. 2017. Т. 84. № 9. С. 19–24.

 

Kirtsideli I.Yu., Parfenov V.A., Zvereva G.N., Petrov A.A., Grigorieva N.O. Effect of ultraviolet radiation from a pulsed ArF laser on the viability of microfungi [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 9. P. 19–24.

For citation (Journal of Optical Technology):

I. Yu. Kirtsideli, V. A. Parfenov, G. N. Zvereva, A. Petrov, and N. O. Grigor’eva, "Effect of ultraviolet radiation from a pulsed ArF laser on the viability of microfungi," Journal of Optical Technology. 84(9), 593-597 (2017). https://doi.org/10.1364/JOT.84.000593

Abstract:

The effect of ultraviolet radiation from a pulsed excimer argon fluoride (ArF) laser on the viability of microfungi spores grown in polar latitudes was studied at a radiation wavelength of 193 nm and pulse width of 15 ns. The radiant exposures required to cause the inactivation of spore monolayers of various micromycete species were determined. The viability of the irradiated microfungi spores was found to be affected by the species composition, presence of melanin in the cell wall, and the age of the micromycete culture. Changes in the surface structure of the spores during laser processing were detected via atomic force microscopy. The results of this work indicate the existence of two parallel mechanisms that result in the destruction of spores—namely, a photochemical and a photothermal process—with the latter mechanism playing the predominant role.

Keywords:

microfungi, micromycete, spores, UV radiation, excimer ArF laser, culture methods, atomic force microscope

Acknowledgements:

This work was partially performed using equipment provided by the Center for Cellular and Molecular Technologies of the study of plants and animals and within the framework of the state task specified by the Botanical Institute of the RAS and their thematic plan (01201255604) and the RAS program, supported by the RSF (14-12-00351). The equipment used to conduct the research study was provided with the support of a grant for the leading universities of the Russian Federation (074-U01). The authors are grateful to A. Yu. Polushkin and A. I. Wangonen, employees of the S. I. Vavilov State Optical Institute, as well as to D. A. Palandzhyan, a graduate student of ITMO University, for their help in conducting the experiments.

OCIS codes: 170.1530, 170.1420

References:

1. I. Salcedo, J. A. Andrade, J. M. Quiroga, and E. Nebot, “Photoreactivation and dark repair in UV-treated microorganisms: effect of temperature,” Appl. Environ. Microbiol. 73(5), 1594–1600 (2007).
2. V. A. Romanovskaya, A. B. Tashirev, S. O. Shilin, and N. A. Chernaya, “Resistance to UV radiation of microorganisms isolated from rocky biotypes of the Antarctic,” Mikrobiol. Zh. 72(3), 8–14 (2010).
3. S. Onofri, L. Selbmann, L. Zucconi, and S. Pagano, “Antarctic microfungi as models for exobiology,” Planet. Space Sci. 52, 229–237 (2004).
4. D. D. Wynn-Williams and H. G. M. Edwards, “Environmental UV radiation: biological strategies for protection and avoidance,” in Astrobiology: The Quest for the Conditions of Life (Springer-Verlag, Berlin, 2001), pp. 244–259.
5. I. Yu. Kirtsideli, V. A. Parfenov, E. P. Chepurnykh, and A. N. Gerashchenko, “Investigation of the influence of UV radiation on micromycetes of polar regions,” Immunopatol. Allergol. Infektol. 1, 63–64 (2010).
6. I. Yu. Kirtsideli, D. Yu. Vlasov, E. V. Abakumov, and D. A. Gilichinskiı˘, “Diversity and enzymatic activity of micromycetes from underdeveloped soils of the coastal Antarctic,” Mikol. Fitopatol. 44(5), 387–397 (2010).
7. S. Onofri, D. Barreca, L. Selbmann, D. Isola, E. Rabbow, G. Horneck, J. P. P. de Vera, J. Hatton, and L. Zucconi, “Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions,” Stud. Mycol. 61, 99–109 (2008).
8. N. L. Rebrikova, Biology in Restoration (RIO GosNIIR, Moscow, 1999).
9. A. A. Gorbushina, N. N. Lyalikova, D. Y. Vlasov, and T. V. Khizhnyk, “Microbial communities on the monuments of Moscow and St. Petersburg: biodiversity and trophic relations,” Microbiology 71(3), 350–356 (2002).
10. P. Leavengood, J. Twilley, and J. Asmus, “Lichen removal from Chinese spirit path figures of marble,” J. Cult. Heritage 1, S71–S74 (2000).
11. M. Mascalchi, I. Osticioli, C. Riminesi, O. A. Cuzman, B. Salvadori, and S. Siano, “Preliminary investigation of combined laser and microwave treatment for stone biodeterioration,” Stud. Conserv. 60, S19–S27 (2015).
12. A. N. Gerashchenko, I. Yu. Kirtsideli, and V. A. Parfenov, “Removal of micromycetes from the surface of monuments using laser processing,” Nauchno-tekh. ved. SPbGPU Ser. “Fiziko-matematicheskiy Nauki” 4(88), 113–118 (2009).
13. Methods of Experimental Mycology (Naukova Dumka, Kiev, 1982).
14. E. P. Feofilova, The Fungal Cell Wall (Nauka, Moscow, 1983).
15. V. I. Biryuzova, Ultrastructural Organization of Yeast Cells (Nauka, Moscow, 1993).
16. H. R. Dickinson and W. C. Johnson, “Optical properties of sugars. II. Vacuum-ultraviolet absorption of model compounds,” J. Am. Chem. Soc. 96, 5050–5054 (1974).
17. T. Inagaki, R. N. Hamm, E. T. Arakawa, and R. D. Birkhoff, “Optical property of bovine plasma albumin between 2 and 82 eV,” Biopolymers 14, 839–847 (1975).
18. O. V. Kamzolkina and Ya. E. Dunaevskiı˘, Biology of Fungal Cells (Tovarishchestvo Nauchnykh Izdaniı˘ KMK, Moscow, 2015).
19. S. G. Inge-Vetchinov, Genetics with the Basics of Selection (Vysshaya Shkola, Moscow, 1989).
20. J. L. Weeks, G. M. A. C. Meaburn, and S. Gordon, “Absorption coefficient of liquid water and aqueous solutions in the far ultraviolet,” Radiat. Res. 19, 559–567 (1963).
21. K. Neuberger, A. Lux-Endrich, C. Panitz, and G. Horneck, “Survival of spores of Trichoderma longibrachiatum in space: data from the space experiment SPORES on EXPOSE-R,” Int. J. Astrobiol. 14(1), 129–135 (2015).
22. T. Ito, A. Ito, K. Hieda, and K. Kobayashi, “Wavelength dependence of inactivation and membrane damage to Saccharomyces cerevisiae cells by monochromatic synchrotron vacuum-UV radiation (145–190 nm),” Radiat. Res. 96, 532–548 (1983).
23. “Use of ultraviolet germicidal radiation for indoor air disinfection,” GUIDELINE R 3.5.1904-04 of 04.03.2004 (Tekhnormativ, Moscow, 2005).
24. E. Sarantopoulou, A. Stefi, Z. Kollia, D. Palles, P. S. Petrou, A. Bourkoula, G. Koukouvinos, A. D. Velentzas, S. Kakabakos, and A. C. Cefalas, “Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum,” J. Appl. Phys. 116, 104701–104715 (2014).
25. V. F. Ur’yash, N. Yu. Kokurina, V. N. Larina, V. P. Varlamov, A. V. Il’ina, N. V. Grishatova, and A. E. Gruzdeva, “Influence of acid hydrolysis on heat capacity and physical transitions of chitin and chitosan,” Vestn. Nizhegorod. Univ. im. N. I. Lobachevskogo 3, 98–104 (2007).
26. E. M. Ali, “Ozone application for preventing fungal infection in diabetic foot ulcers,” Diabetol. Croat. 42(1), 3–22 (2013).
27. R. L. James, F. W. Cobb, Jr., and J. R. Parmeter, Jr., “Effect of ozone on sporulation, spore germination, and growth of Fomes annosus,” Ecol. Epidemiol. 72(9), 1205–1208 (1982).